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Abstract In dynamic reliability, the evolution of a system is governed by a piecewise
deterministic Markov process, which is characterized by different input data. Assuming
such data to depend on some parameter p € P, our aim is to compute the first-order
derivative with respect to each p € P of some functionals of the process, which may
help to rank input data according to their relative importance, in view of sensitivity
analysis. The functionals of interest are expected values of some function of the process,
cumulated on some finite time interval [0, ¢], and their asymptotic values per unit time.
Typical quantities of interest hence are cumulated (production) availability, or mean
number of failures on some finite time interval and similar asymptotic quantities. The
computation of the first-order derivative with respect to p € P is made through a
probabilistic counterpart of the adjoint state method, from the numerical analysis field.
Examples are provided, showing the good efficiency of this method, especially in case
of a large P.

Mathematics Subject Classification (2000) 60K20 - 90B25 - 74S10

1 Introduction

In dynamic reliability, the time-evolution of a system is described by a piecewise de-
terministic Markov process (PDMP) (I, Xt),~ introduced by Davis (1984). The first
component Iy is discrete, with values in a finite state space E. Typically, it indicates
the state (up/down) for each component of the system at time ¢. The second compo-
nent X¢, with values in a Borel set V' C Rd, stands for environmental conditions, such
as temperature, pressure, and so on. Both components of the process interact one in
each other: the process jumps at countably many isolated random times; by a jump
from (I;-,X;-) = (i,2) to (It, X¢) = (J,y) (with (¢,z), (j,y) € E x V), the transition
rate between the discrete states i and j depends on the environmental condition z just
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before the jump and is a function  — a (¢, j, ). Similarly, the environmental condi-
tion just after the jump Xy is distributed according to some distribution p(; ; ) (dy),
which depends on both components just before the jump (¢, z) and on the after jump
discrete state j. Between jumps, the discrete component [I; is constant, whereas the
evolution of the environmental condition X is deterministic, solution of a set of dif-
ferential equations which depends on the fixed discrete state: given that It(w) =i for
all t € [a,b], we have %Xt = v(i, X¢(w)) for all ¢t € [a,b], where v is a mapping from
E xV to V. Contrary to the general model from Davis (1993), we here assume that the
eventual reaching of the frontier of V' does not entail jumps for the process (11, X¢):>0-

Now, let (I, Xt)¢>0 be a PDMP for which the jump rates a(i,j,z), the jump
distribution p(; ; »)(dy) and the velocity fields v (i, z) are assumed to depend on some
family of parameters P € Rk, where k£ € N can be quite large. Our aim here is to provide
information about the sensitivity with respect to the elements of P, of expressions with
the following form:

Rpo(t) = By (/Ot h(Is, Xs) ds) ,

where pg is the initial distribution of the process and h is some bounded measurable
function which can also depend on p € P. Such expressions include e.g. cumulative
availability or production availability on some [0, t], mean number of failures on [0, ¢],
mean time spent by (Xs)p<g<; between two given bounds. We are also interested in
the sensitivity with respect to p € P of the corresponding asymptotic quantities per
unit time, namely in quantities of the form

Rﬂo (t) .

lim
t——+o0
This sensitivity analysis can be guided by the knowledge of the first-order deriv-

atives of Rp,(t) with respect to p, where p € P. More specifically, we consider the
following normalized derivative:

p  ORp, (t)

IF, (t) = B Op (1)

for t < +oo0 and p € P, which we call the importance factor of parameter p in Ry, (t).
Such a dimensionless expression may help to rank the different parameters p € P ac-
cording to their relative importance in R, (¢t). This kind of sensitivity analysis was
already studied by Gandini (1990) and by Cao and al. (1997) for pure jump Markov
processes with countable state space, and extended to PDMPs by Mercier and Rous-
signol (2008), with more restrictive a model than in the present paper however.

The starting point for this study is the Markov property of the process (It, Xt);~¢,
which allows to write the associated Chapman-Kolmogorov equations fulfilled by its
marginal distributions, see Davis (1993) or Cocozza-Thivent and al. (2006b). Such
equations appear as weak forms of linear first order hyperbolic equations, see Eymard
and al. (2008) e.g.. The expressions for the derivatives of interest can then be obtained
by solving the dual problem, as suggested by Lions (1968) for a wide class of partial
differential equations. The Chapman-Kolmogorov equations and its dual problem are
here solved using finite volume methods as provided by Cocozza-Thivent and al. (2006a)
or Eymard and al. (2008), which here prove to be well adapted. An alternate way to
compute the marginal distributions of the PDMP might be to start from the Markov



renewal equations they fulfill, as proposed in Chiquet and Limnios (2008) for a specific
case of PDMPs, or to use Monte-Carlo simulations.

In order to study the asymptotic quantities, one must put assumptions on the
process to ensure its positive Harris recurrence. These assumptions may be proved to
be true for Markov processes on general state space using techniques like those in Down
and al. (1995), Meyn and Tweedie (1993a) and Meyn and Tweedie (1993b), as is done
for both examples at the end of this paper. Alternately, one may use specific results
for piecewise deterministic Markov processes, as provided in Davis (1993), Costa and
Dufour (1999) and Costa and Dufour (2003).

The paper is organized as follows: technical assumptions are set up in Section 2. An
existence result for the derivatives of the transient quantities is provided in Section 3
and a computable expression is given for them in Section 4, using duality. Asymptotic
quantities are studied in Section 5. Numerical procedures are exposed in Section 6,
using finite volume methods. Two numerical studies close the paper in Sections 7 and
8.

2 Assumptions

All the paper is written under the following general assumptions:

— for all 4,5 € E, the function z — a(i, j, z) is continuous and bounded on V/,
— for all ¢,j € E and all continuous and bounded function f on V, the function

z+— [y f(y) 11(s,j,)(dy) is continuous and bounded on V,

— for all ¢ € E, the velocity field v(i,z) is such that the function x — v(i,z) is

Lipschitz continuous and bounded by Vi = max;cg ||V (4,) ||oo > 0.

These assumptions guarantee the existence and uniqueness of the solution to the
set of differential equations ‘fi—”t” = v (i,z); we denote by ¢ (i,z,t) the single solution
(defined on E x V x R) such that g (i,z,0) = x.

The jump rates a(i,j,z), the jump distribution p(; ; .y, the velocity field v (i, z)
and the function h are assumed to depend on some parameter p, where p belongs to
an open set O C R or R*. All the results are written in the case where O C R but
extension to the case O C R¥ is straightforward. We add exponent () to each quantity

depending on p, such as 1P or Rgﬁ)(t),

Under the above technical assumptions, (It(p)vXt(p))DO is known to be a Markov

process with general state space E x V, see Davis (1993_), Cocozza-Thivent and al.
(2006b), with strong Feller transition semi-group. We denote by pgp) (4, dy) the distrib-

ution of the process (It(p),Xt(p))t>0 at time ¢ with initial distribution pg (independent

of p) and by Pt(p) (4,2, j,dy) the transition probability distribution of (It(p),Xt(p))t>0.
We then have: -

t t
R® 1) = /0 PPR) s = 3 /V ( /O WP (5, ) ds) o) (i, d)

el

L @) )
2/0 poPs? hP) ds:Z/V (/0 (Psp h(p)) (i, x) ds) po (i, dz)

icE



In order to prove existence and to calculate derivatives of the functional Rg;), we
must give a sense to the derivatives of the transition probability distributions. With
that aim, we need the following additional assumptions that we denote as assumptions
H1 (resp. Ha):

For each p in O, there is some neighborhood N(p) of p in O such that, for all
i,j€ EXE:

— the function (z,p) — a®)(i,,2) is bounded on V x N(p), once (resp. twice)
countinuously differentiable on V' x O, with all partial derivatives uniformly bounded
on V x N(p),

— for all function f() (z) bounded and once (resp. twice) countinuously differentiable
on V x O, with all partial derivatives uniformly bounded on V' x N(p), the function
(z,p) — [y f® (v) ugfz.’x)(dy) is bounded and once (resp. twice) countinuously
differentiable on V x O, with all partial derivatives uniformly bounded on V x N (p),

— the function (z, p) — v(®) (4, ) is bounded on V x N (p), once (resp. twice) countin-
uously differentiable on V' x O, with all partial derivatives uniformly bounded on
VX N(p),

— the function (z,p) — h(p)(i,m) is bounded on V x N(p), once (resp. twice)
countinuously differentiable on V' x O with uniformly bounded partial derivatives
onV x N (p).

The third point implies (see e.g. Cartan (1967)) that, for all ¢ € E, the func-
tion (x,p) — g® (i, z,s), solution of the differential equation % = v(P)(i,g) with
g(%,2,0) = x, is once (resp. twice) countinuously differentiable on V' x N(p), with all
partial derivatives uniformly bounded on V' x N(p).

Throughout the paper, under assumptions Hj or Ha, for each p in O, we shall refer

to a N(p) fulfilling the four points of the assumptions without any further notice.

We may now give a sense to the derivatives of the transition probability distribu-
tions, which is done in next section.

3 Existence result

We shall use the infinitesimal generators of both Markov processes (It, X¢),~ and
(Ita Xtv t)t20:

Definition 1 Let Dy, be the set of functions f(i,z) from E x V to R such that for
all i € E the function © — f(4, ) is bounded, continuously differentiable on V' and
such that the function z — vP)(i,z) - V (i, ) is bounded on V.

For f € Dy, , we define

HY fi0) = 3 aPGg.0) [ 16,0 0 @) + V060 V1)
JEE v
where we set a(P) (i,i,2) = — Ej# a(p)(i,j, x) and “Ef,)i,z) = Jy.
Let D be the set of functions f(i,x,s) from E x V x Ry to R such that for all i € E
the function (z,s) — f(4,2,s) is bounded, continuously differentiable on V' x R4
and such that the function (z,s) — %(z, z,s) + v(®) (¢,2) - Vf(i,z,s) is bounded on



14 XRJ'_‘
For f € Dy, we define

H® f(i,z,5) = Ejja@’) (i2) [ 1G..9) 1)y (@) + G i
+ V(p)(i7 z) - Vf(i,x,s) (2)

We then have for all f € Dy,:

t
Pt(p)f: er/(; H(()p)P,Ep)f du (3)
t
o1 =of+ [ AP HP S (4)
and for all f € Dy :
@ pr el b o) ) e
P| f<,,t>—f<,,0)+/0Pu HOf (- u) du (5)
t
PP (t) = pof (-, 0) + /0 PP HP f () du (6)

These are Chapman-Kolmogorov equations.

Thanks to these equations and to Theorem 4 in the Appendix, we get the following
result:

Proposition 1 Let f(i,z) be a function (independent of p) from E XV to R such that
for all i € E, the function x — f(i,x) is bounded, continuously differentiable on V
with uniformly bounded partial derivatives on V. Under assumptions Hi, for alli € E,

the function (x,p) — (Pt(p) f) (3, ) is continuously differentiable on V x O, with all

partial derivatives uniformly bounded on V x N (p) for all p € O. Under assumptions
Ha, if for all i € E the function x — f(i,x) is bounded, twice continuously differen-
tiable on V with uniformly bounded partial derivatives on V, then for all i € E, the

function (z,p) — (Pt(p)f) (4,x) is twice continuously differentiable on V x O, with
all partial derivatives uniformly bounded on V- x N (p) for all p € O.

Proof Let pg € P and N(pg) be a neighborhood of pg. Setting ¢ (s, 4, (z,p)) = Pt(p)f(i, x)
for (i,z,p,s) € E XV X N (pg) x Ry, the Chapman-Kolmogorov equations (3) can be
written as:

Lp(t,’i,(;l’,p))
Zf(i7$)
t
a(p)i'x u, J (P), v(p)ix- zo(u, 1, (x u
+/ > as ) [ ot o) n) @)+ 6.2) - Vot ) | 4
(7)

where V, stands for the gradient with respect of x. Using a similar method as in
Cocozza-Thivent and al. (2006b), we introduce the function ¢ defined by:

@(tv 1, (xvp)) = QO(t’ i, (g(p) (iv T, —t),p))



Noting that
o(t,i, (z,p)) = @(t,i, (9 (i, 2, 1), p)),

equations (7) may now be written as:

¢(t, i, (z,p))
= f(Z, .T)

t
+/ a(l’) i, 7, g(P) i,z,—u / 3(u, 4, g(P) J.y,u),p (P) Ny dy du
D R L TN

Using the notations of Theorem 4, we set z = (z,p), @o(%, z) = f(4,z) and

Fs,0) (0,2) = Y a®(i,5,9% (6,0, ~)) /V G, (9" Gy, ) )i (dy)

} i3, (i, —5))
JjEE

for (i,z,p,s) € E XV x N(pg) x Ry and ¢ : E XV x N(pg) — R bounded and
measurable. The function ¢ then satisfies the equations:

t
B(t,irz) = Foli,2) + /0 Flu, 3w, ) (i, 2) du.

We now check that assumptions of Theorem 4 are fulfilled and we set I to be an interval
such that [0,7] C I. Symbols W =V x N(po), C}Y(E, W), C¥(I, B,W) and J (F) are
as in the Appendix. With such notations, the function @ belongs to Ci’(E, W) and
assumptions Hj imply that:

— if W e C¥(1,E,W), then F(s,%(s,.,.))(i, (x,p)) is in CY(I, E, W),
— if W € CY(E, W), then for all s € I, F(s,¥) and VF(s,¥) are uniformly Lipschitz
with respect to ¥.

Assumptions Ho and @g € C’S(E, W) imply that:

— if W e C5(1, B, W), then F(s,%(s,.,.))(, (x,p)) is in C5(I, E, W),
— if ¥ € CY(E, W), then for all s € I, F(s,¥), VF(s,¥) and J (F) (s, ¥) are uni-
formly Lipschitz with respect to ¥.

All required assumptions are then checked, which provides the result. a

Remark 1 Using the explicit form of transition probabilities (see Cocozza-Thivent and

al. (2006b)), the functional f —— 3% (Pt(p)f) (i,x) appears to be a continuous linear

functional of f which involves f and daTk for 1 < k < d (and possibly other deriv-
atives). Limiting this functional to the set of functions f such that =z — f(i,2) is
infinitely differentiable with a compact support for all ¢ € E, it may then be seen
as a distribution. We actually define this functional on the greater space of bounded
continuously differentiable functions with uniformly bounded partial derivatives and

we use the following notation:

o aP(P)

Next corollary is straightforward.




Corollary 1 Under assumptions Hi, the function (x,p) — (Pt(p)h(p)) (i, ) is con-

tinuously differentiable on V x O for all i € E, with all partial derivatives uniformly
bounded on V x N (p) for all p € O. Besides:

) _ apP _ PN
ap(Pt‘p’h<P>)<z,w>=<a; ) o)+ { PP T ) (i)

for all (i,z,t,p) € ExV xRT x O.

We derive the following theorem:

(p)

Theorem 1 Under assumptions Hi, the function p — Ry’ (t) is countinuously dif-
ferentiable with respect to p and

8@ Po (t /Z/<8P h(p)>(z z) poli, dz) du
/ZZ// (’)p W (i, y) PP (i, 2, 5, dy) po (i, dz) du

i€EE jEE

o () OR)
= P du+ / % d 8
./0 < op ¢ ap ®

where we set:

<8Pu h(;D)> Z/< p h(p)>(z',:r) po(i, dz). (9)

1€EE

Remark 2 Assumption on AP in ‘H1 may be generalized to the case where h(p)(i, x)
is continuously differentiable only for almost all (a.a.) x € V, where a.a. means with
respect to Lebesgue measure.

Our purpose now is to compute this derivative. The marginal distribution pq(f) (4, dy)
may be estimated by different methods, as indicated in the introduction. However, we
do not know how to compute directly the derivative of the marginal distribution which
appear in the above expression. We now transform it in order to make it easier to
compute.

4 Results in the transient case

Let us first define the notion of importance functions.

Definition 2 We say that a function wgp)

to the function h(P) and to ¢ if:
- gogp) is solution of the differential equation H(P )cpgp) (i,z,s) = h® (i,2) for all
(i,z,8) € E XV x [0,t],

- (pgp)(z',:r,t) =0 for all (¢,2) in E x V.

€ Dy is the importance function associated



Proposition 2 Lett > 0. Under assumptions Hi, the importance function associated
to (h(p),t) exists, is unique, is continuously differentiable on V x O, bounded with all
partial derivatives uniformly bounded on V x N(p) for all p € O. Under assumptions
Ha, the importance function associated to (h(p),t) is moreover twice continuously

differentiable on V x O with all partial derivatives uniformly bounded on V x N(p) for
allp € O.

Proof Let go(p) € Dy (eventually depending on p) and let us set:
$W) (i,2,5) = ¢V (1,9 (i, 2, —5) ,t — s) (10)

for all (i,z,s) € ExV x]0,t]. The function 3®) is bounded, continuously differentiable
on V with partial derivative with respect of time given by:

8@(1’) .
27 6209)
(»)
= —8;081 (i,g(p) (i,2,—s),t — S)
W(zm( 0P (2 s) t_s).v@)( 9P (4, 2, —5)) (11)

The function go(p) and ¢(p) are in one-to-one correspondence with:
o ® izt = 5) = 3P (1,9 (i,2,9) ) (12)
for all (i,2,s) € E x V x [0,t]. Using (10 — 11), we get:

H(p)go(p)( (:D)( 2,—8),t—s)
_ _ (») 0, ® o .
= 3 (i) PGt = T oy @) = T (i)

:H@ﬁ)wa@

where

H(P)@(p) (i, 2, S)

- Z a Z .7 g Z 2 _S))/ 85(17) (]79(17) (j7y75) ) 5) Méf’)j,g@)(i,z,*s))(dy)
JEE v
3@(1’)

h 0s1

(%, 2,8) .

The problem now resumes to show existence, uniqueness and regularity of gé(p) such
that
g(P)¢(P) (i,2,5) = B®) ( (») (i, 2, —s)) (13)

for all (i,2,s) € Ex V x[0,] with P (i, 2,0) = ¢ (i, z,t) = 0 for all (i,z) € Ex V.
The o.d.e. (13) may be written as:

t
Fn0 = [ R (60 (ns).5) i,2) ds
0



with

R®P) (sé(p) (¢ -78)78) (4, 2)
= 3 a®(i, g (i7z7_s))/

3P (5,97 (Grys9) )l
JEE v

g @ (i,2,—s) (4Y)

_ @ (i,g(p) (i, 2, —s)) )

Theorem 4 from the Appendix then provides the result in the same way as for Propo-
sition 1. a

(p)

Next lemma provides a duality result based on the definition of ¢;"’, which trans-

(p)

ports the differentiation with respect of p from the marginal distribution pg’ to oper-
ator H®),

Lemma 1 Under assumptions Ha, we have:

t apgp) t oH )
‘/0 < 8}7 7H(p)()0§p)('7'75) ds = _A p(Sp) 8]7 gpz(fp) ('7'75) ds

where we set:

9H®P) ga® ) )

B e =3 g [ el ul), @)
jEE

® 52 2 : ()
+2_ aPGha) 5 (/Vso(J,y,S) u(i,m)(dy)))

JjEE
v
dp

for all ¢ € Dy and all (i,z,5) € E XV x Ry.

(p)
Proof Thanks to Proposition 2, functions @ip)(i, x,s) and 8:;; (¢, x, ) are in Dg. We

(i,2) - V(i,z, s)

first know from the Chapman-Kolmogorov equation (6) applied to <p§p) that:
t
/0 PP HP G (- s) ds = o ofP) (1) — poel?) (-, 0) = —poel? (-,-,0)

due to gogp) (,-,t) = 0. By differentiating this expression with respect to p, we derive:

t (p) t ()
/ <apS 7H(p)$0§p) ('7'7S)>d8+/ ng) 81;[ Sogp) ('7'78) ds
0 0 p

dp

t (p) (p)
®) 7(p) 0Pt _ ¢y
—+ HY ——(-,-,8) ds = — -+ 0). 14
/0 Ps op (58) 5 (,-,0) (14)
(p)
Chapman-Kolmogorov equation (6) applied to 8:;;” gives:
t (p) (p) (p)
(P) g7 (p) oy o s) ds = P oy ) — Opy .0
/0 Ps ap ( I 78) S pt 8]7 ( LS ) £0 8p ( ) )
__ o
= —pP0 ap (770)

Hence the result, substituting this last outcome in (14). O
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We easily derive the following result, using the definition of RE};) (t) and of goz(sp) (5, 8).

Theorem 2 Under assumptions Ha, we have:

ORE) [ () On® L HY ()
Tp(t)_/o Ps Tpds_/o Ps Tp(pt ('7'»8) ds, (15)

(p)

where ;" is the importance function associated to (h(p),t).

Remark 8 In case that Ry, (t) depends on a family of parameters P, the computation

OR(P)
of all 8;0 (t) for each p € P consequently requires only one single computation of
(P) (P)

both ps" ’ and ¢, ’/, and simple summations on [0,t] for each value of p. This is to be
compared to the usual finite differences method, which requires one first evaluation of
pgp) and another evaluation of pgpp <) for each value of p € P and some ¢ > 0, where
Py stands for the family P in which parameter p has been changed into p + €. In
case of a large P, the present methods, which only requires two effective computations,

consequently appears as cheaper than finite differences.

In applications, the importance function will generally be computed numerically.
An analytical form is however available, which is also useful for the asymptotic study:

Lemma 2 Let t > 0. Under assumptions Hy, the importance function associated to

(h(p),t) is given by:

e (qup)h@)) (i,a)du if 0<s<t

(16)
0 otherwise

o) (i, 2, 5) —{

for all (i,z) € Ex V.

Proof Let <p§p) be the function defined by (16). It is clear that @Ep) (4,z,t) = 0 for all

(i,z) € E x V and thanks to Proposition 1, the function cpgp) is in Dy . Besides, for

0 < s < t, we have:

(H(p)gogp)) (-, 8) = 7H(p) /t—s p&l’)h(?) du
0

t—s t—s
_ g ( / PP @) du) _ % ( / PP @) du)
0 0

_ _/t—s Hép) (Pl(Lp)h(P)) du + Pt(f)sh(p)
0
_ (P

due to the Chapman-Kolmogorov equation (3), which completes the proof. O
We easily derive the following Corollary from Theorem 2 and the previous lemma.

Corollary 2 Under assumptions Ha, we have:
ORpy) /t (r) ORP) /25 (r) OHV < /H (p)p, () )
t) = ds + PR du ) ds 17
Oop ®) 0 ps dp 0 Ps Op 0 ¢ (17)

Equation (17) is an extension of the results of Gandini (1990) for pure jump Markov
processes with countable state space.
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5 Asymptotic results

We are now interested in asymptotic results and we need to assume the process
(I, Xt);>p to be uniformly ergodic, according to the following assumptions H3:

— the process (It, Xt),> is positive Harris-recurrent with 7P) as unique stationary
distribution,
— for each p € O, there exists a function f(”) such that

+oo +oo
/ f(p)(u) du < o0, / u f(p)(u) du < +oo, lim f(p)(u) =0, (18)
0 0 u——+00

and

’(P&p)h(p)) (i,x) — 2P p(P) < f(p) (u) (19)
for all (¢,z) € E x V and all u > 0.

As already noted in the introduction, such assumptions may be proved to be true
by using results for Markov processes on general state spaces or specific results for
piecewise deterministic Markov processes (see the introduction for references).

In order not to give too technical assumptions difficult to check in practice, we con-
straint our asymptotic study to the special case where only the jump rates a(p)(i,j, x)
and the function h(® (i,2) depend on the parameter p. The quantities f(; j,) and
v(i,z) are consequently assumed to be independent of p. Assumptions Hz are then
substituted by assumptions 5, where conditions on K(i,j,z) and on v(i,x) are re-
moved.

We now transform (17) in view of studying its asymptotic expression.

Lemma 3 Under assumptions Ho and Hsz, we have:

10RY) 1 [t (,)on®)
1 op (t)—;/o Ps “op ds

L[t @oH® (7w ) )0
+¥/0p567p(/0 (Puh — 7P )du)ds (20)

Proof The first term is clear. Besides, setting 1 to be the constant function equal to 1,
(») . . . .

we have: 8%[; 1 =0 since HP'1 = 0. As 7P h(P) is a constant (independent of (,z)),

we derive

81;7;@ (W(p)h(p)) - (W(p)h(p)) 81;7;)

and consequently:

oH™ e (p),(p) — oH) PP —
o (/0 " h du)-(t—s)Tp(ﬂ' h )—0.

Whence the result. O

, , , , OR®P
We may now prove existence and provide an asymptotic expression for %TZO (t)
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Theorem 3 Let us assume that p; ; ) and v(i,z) are independent of p and that H'o,
Hs are true. Then:

UR®) (i, z) = /

0

e (P20 (i,2) = P 1) du

exists for all (i,z) € ExV and UK®P) is element of D, - Besides:

LORY)  on® g oHY
ATy W= T, U (21)
where we set:
oHP 9al?) .
oy 70 (0>) '_jeZETp(Z’]’x) /VSOO(LZ/) 1) (dy)

for all o € Dy, and all (i,2) € Ex V.

Proof Due to Hs, the quantity UhP) (¢, z) is clearly defined for all (i,2) € E x V and
UL®) is element of Dp,. Under Hz, we know that:

L) e ) ()
t_lf?rlooi/o ps @ ds=m"p (22)

for each measurable and bounded ¢P). The first term in right side of (20) con-
sequently converges to the first term in (21). For the second term, setting Us :=

fs+oo (Plgp)h(p) _ ﬂ-(P)h(P)) du, we have:

L[ @ 0HP (7w, ) o))
g/ops - (/0 (PR — 2P )du)ds

t (p) t (p)
- % / o Lf; Un® gs - / PPy ds.
0 p t Jo Op

. . (p) . . .
By assumption, the function agpp ULP) is bounded and independent of time, and
consequently:

. 1 [t (p)aH(p) (p)
Mm 3 /0 ps” =g, UM ds o

It now remains to prove that

t (p)
lim 1/ SO s~
0

t—+oo t op
We have:
oH® da? :
‘ o t—s(i, ) S;; Tp(Z’J’w) ’/‘/Ut—s(va)ﬂ(i,j,x)(dy)

As |Us(i,2)] < f:_OO FP)(4) du due to Hs, we have:

+oo
Up—s(i,o)| < K / £ (u) du
t

—S

oH P
dp
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and

1/t (p)aH@) 1/t too (

- = Up_, < - D)

t/opS p Ui—s ds _Kt/o /t—s ¥ (u) du) ds

+oo
SKE/ uf(p)(u) du.
tJo

This ends the proof. O

The previous theorem provides an extension of the results given in Cao and al.
(1997) for pure jump Markov processes with countable state space.
Next proposition gives a tool to compute the function UR®),

Proposition 3 Let us assume that pi(; j ) and v(i,x) are independent of p and that

H'o, Haz are true. Then the function UR®) s the unique solution of the following
ordinary differential equation:

Hép)Uh(p) (z,m) — W(P)h(P) _ h(p)(i, LE) (23)
for all (i,x) € E x V such that #PULP) = 0.

Proof Under assumptions Hs, we clearly have P yUR® =g by Fubini’s theorem. We
now check that UhP) is solution of (23): under Hs, we may write

“+o0
HPULD (i,2) = HP) /O ((pﬁh@)) (i,m)fw(p)h(p)) du

+oo
= / Hép)qup)h(p) (i,z) du
0

since H(gp) (ﬂ(p)h(p)) = (’Tl'(p)h(p)) H(gp)l = 0. We derive:

t
H(()P)Uh(l’) (i’m):tiif?oo ; (Hép)plgp)h(p) (i’x)) du

= lim Pt(p)h(p) (i,z) — 2 (i,z) (Chapman-Kolmogorov equation)

t——+oo

=a@Rp®P) B (i 2),

which shows that Uh®) is solution of (23). Now, let ¢ be the difference between two
solutions ¢1, 2 of (23) such that 7P o1 = 7Py = 0. We then have: Hép)go =0 and
consequently: PtH((]p)go =0 for all t > 0. Using PtH(()p)go = H(()p)Ptcp (see Davis (1993)
e.g.) and (3), we get Prp = ¢ and:

. N ,
eli0)= dim 1 [ (Pe)a) =2

for all (i,2) € E x V. Whence the result, using 7P =aPy — 7Py, =0, O

Remark 4 Just as for the transitory results, in the case when the data depend on some
(P

AR
family of parameters P, the evaluation of all limy_, 4 %T’;"(t) only requires one
single computation of both (") and Uh(P), which seems cheaper than finite differences
methods in case of a large P.
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6 Numerical procedure

OR®P)
In this section, we propose some method for the numerical evaluation of 3;‘3 (t) and

of its asymptotic rate per unit time when ¢ — 400, based on the implicit finite volume
scheme given in Eymard and al. (2008). These methods are obtained by translating
the continuous procedure described above into the discrete setting of finite volume
methods, and are provided without proof.

6.1 Principle of the numerical scheme in the transient case

Here, we consider the general case where any quantity (except pg) may depend on p. We
consider a mesh (or partition) M of V' C R? which satisfies some regularity hypotheses
(details are given in Eymard and al. (2008)), and some time step & > 0. Realizing a
discrete version of the Chapman-Kolmogorov equation (4) and starting from p(o) = po,

the scheme resumes to compute the family of real values (pyll)() , such
’ (i, K,n)EEXMxN
that pfnl)( is an approximation of [ pgp) (i,dx) for t € [ndt, (n + 1) &].
Introducing an infinite matrix A = (A(i,K)(j,L)) (K. G.L)eBXM’ the scheme can
be written as
p(n+1) _ p(n)
+1 i, K i, I
> Aurgnely )+ g =0

(G, L)eEXM

for all (i, K,n) € Ex M x N (see the quoted reference for the detailed coefficients), or
equivalently

(n+1) _ ,(n)

Ap(n—i—l) + P 5 14 -0 (24)
; ()
for all n € N, setting p(™) := (pi’K)(i,K)EExM'
For t = M& with M > 1, a discrete approximation of Rffé) (t) then is Rg\f[) with:

M
RE =357 3 aplhix (25)

n=1i€E KeM

and
7o 1 ) (;
hix = ®) / AP (i, x) dz (26)

for all (i, K) € E x M, where m(K) stands for the d—dimensional Lebesgue measure
of K.

In order to mimic the procedure used to evaluate %Rgz) (t) in (15), we define a
discrete version H of H:

(n) _ gn+1)

(7 ()™ = ato™ 1 5 (27)

for all bounded families 6 = (052) (K .m)EEX MxN'
’ 1, K,n)ekbkX X
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We next introduce a discrete approximation of the importance functions ¢ as

(p:

7 (_Evl)()(i,K,n)eExMxN7 single bounded family solution of:

(7 (@)™ =h forallne{0,...M—1} (28)

with (I)< =0 for all (4,K) € E x M and all n > M. The mathematical study of
the Well-posedness of (27) and of the resolution of (28) might be driven under classical
hypothesis.

Following the same calculation steps as in the continuous case, we now get:

2 (AD) -2 ¥ > ol ((9@ _@IZ(@)EM)) (29)

1€cE KeEMn=1

where, for all (i, K,n) € E x M x N:

ol _\™ OAG,L)(i,K) _(n)
(1) s e
op LK (jL)EEXM p !

In the case when the data depends on a family P of parameters, the numerical compu-
tation of 8 (R( )) for all p € P hence requires to solve two implicit volume schemes

provided by (24) and (28), which are independant on the choice of p in P (see Remark
3). Due to the definition of H (see (27)), such schemes appear as dual schemes, which
clearly simplifies their implementation. Also, the different summations required for
each p € P for the estimation of (29) are made simultaneously by solving the schemes,
which helps saving CPU time and memory stocking size too.

6.2 Asymptotical numerical procedure

Following the discretization technique introduced in the transient case, a discrete so-
lution of the asymptotic problem is a family of real values (ﬁi,K)(i K)EEXM such

that 7; g is an approximation of the quantity fK 7P (i,dx). Using again the infinite

matrix A = (A(i,K)(j,L)) (LK) (D) EEXM’ the asymptotic scheme can then be written
as:

Y. Awk)GTiL =0 (30)
(j,L)EEXM

for all (i, K) € E x M, under the constraint

> mL=1 (31)

(4, L)EEXM
Equivalently, the scheme writes:
A =0and 7-1 =1, (32)

where 1 is the constant family with the required dimension and generic term equal
to 1, and where - stands for the dot product (z -y = Z(i,K)EEXM x; Kk Yi,x for all
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T = (xivK)(i,K)eExM and y = (yivK)(i,K)eExM)' This scheme is assumed to have a
unique solution.

An approximation Rgrp) of limy— 4 oo %RE){;) (t) now is:

R;p) = Z Z Ti,khik =7 - h,
icE KeM
where Bi,K is provided by (26) and h = (Bi,K)(i K)eEx M-
In the same way as in the transient case, we mimic the continuous procedure and
we consider the discrete version Hq of Hg, given by:

(Ho (0)) = A" 0

for all bounded families § = (0i7K)(i K)EEXM"

We next introduce a discrete version U of the potential function Uh(p)7 solution to
HoU = (7-h)1—hand 7-U =0, (33)

which is assumed to have a unique solution. We finaly derive the discrete approximation

ORI 1 OR) e
gy of limi— 400 7 —5p% (t), which is given by:

ORY __ oh . (aHOU)

dp p dp
with B oA
9Ho 7\ _ 3 GLGEK) 5
dp i K ) dp ’
% (4, L)YEEXM

for all (i, K) € E x M.

The same remarks as in the transitory case are still valid here and in case when the

n(P)
data depends on a family P of parameters, the numerical computation of all 81;* for

each p € P requires to solve exactly two dual volume schemes, provided by (32) and
(33).

7 A first example
7.1 Presentation - Theoretical results

A single component is considered, which is perfectly and instantaneously repaired at
each failure. The distribution of the life duration of the component (77) is absolutely
continuous with respect of Lebesgue measure, with B (77) > 0. The successive life
durations make a renewal process. The time evolution of the component is described
by the process (Xt),~, where X; stands for the time elapsed at time ¢ since the last
instantaneous repair (the backward recurrence time). There is one single discrete state
so that component I; is here unnecessary. The failure rate for the component at time
t is A (X¢) where A (-) is some non negative continuous and bounded function. The
process (Xt),>( is "renewed" after each repair so that p(,) (dy) = do (dy) and the
evolution of (X¢),~, between renewals is given by g (z,t) = © + t.
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We are interested in the rate of renewals on [0, ¢], namely in the quantity Q (¢) such

that:
Q) = RT“) - %IE}O (/Ot)\(XS) ds>

where R (t) is the renewal function associated to the underlying renewal process.
The function A (z) is assumed to depend on some parameter p > 0 and to meet
with H5 (= Hz) requirement. (Here, both K(z) (dy) and v (z) are independent of p).

Assuming E (Tl(p)) < 400, the process is known to have a unique stationary dis-

tribution (") which has the following probability density function (p.d.f.):

P (Tl(p) > x) o= JE AP (w)du

(p) )= = .
Besides:
Q) (00) = — : (35)

TR (117) e ATy

which is a direct consequence from the key renewal theorem.
We now provide conditions which ensures the process to be uniformly ergodic (H3):

Proposition 4 Let us assume that E (e‘STl) < 400 for some 0 < § <1 and that Ty

is new better than used (NBU), namely such that for all ,t > 0, we have F (z +1t) <
F (z) F (t), where F is the survival function F (t) = P (T} > t). Then, there are some
C < +o00 and 0 < p <1 such that:

‘Pt(p)/\(p) (z) — 7PAP)| < opt

for all x € Ry.

Proof We use the following result by Konstantopoulos and Last (1999): assume that
E (e‘STl) < 400 for some § > 0. Let n > 0 be such that n < § or n < § A1 and define

+o0 n
W5,7] (x) =1+ 6(6777)06/ 6&Mdt > 1.
0 F ()

Then there are positive constants C1 < 400 and p < 1 such that
HPt(p) (ZE, ) _ ﬂ-(p) H S Cl W(s,n (Jj) pt
W&,n

where

lvlly;, = sup  |vgl.
|9‘§W5,T/

Now, under the assumption E (eéTl) < +o0 for some 0 < 6 < 1, let us choose n = 4.

As T7 is NBU, we know that ng;r)t) < F(t) for all z,t > 0. Setting f to be the p.d.f.
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of Ty, we derive:

using Fubini’s theorem. From the quoted result, we now derive existence of Cy < 400
and p < 1 such that
[0 c1 ), <

8,m

A

which easily provides the result due to e

‘SlSW&n. O

7.2 Numerical results

We assume that 77 is distributed according to some Weibull distribution, which is
slightly modified to meet with our assumptions:

aBzP1 if < g
3\(@8) (2) = { Papozo (z) if o< <xp+2
afB(zo+1)P71 it zo+2<

where (o, 8) € O =]0, +00[x]2, +00[, 2o is chosen such that 71 > z¢ is a rare event
(i.e. P (T1 > wg) = e~ 0 is small) and P, g 5, () is some smoothing function which
makes z — A(@F) (z) continuous and non decreasing on Ry . For such a failure rate,
it is easy to check that assumptions H5 and Hg are true, using Proposition 4.

Taking (o, 8) = (10_57 4) and 29 = 100 (which ensures Py (T} > zq) ~ 5x10743%),

(€]
we compute I F}, (t) = Q(PL)(t) 8Q3pp () and the asymptotic value IFp(oc0) for p € {a, 8}

by the finite volume methods (EMR) from Section 6.
For comparison purpose, we also compute such quantities by finite differences (FD)

using:

e CAARIC RN 0)

for some small €. As for the the transitory FD quantities, we use the algorithm from
Mercier (2007) which provides an estimate for the renewal function R) (t) and hence

(p)
for Q(p) (t) = w. For the asymptotic FD quantities, we use the exact formula (35).
The asymptotic results are gathered in Table 1.

Table 1: IFy (c0) and IFg (co)
by finite differences (FD) and by the present method (EMR).
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Relative error

Relative error

5 IF, (00) between FD | IFpg(c0) | between FD
and EMR and EMR
1072 | 4.625x107° | 9.8 x 1071 2.8242 1.1x 1073
10-1 | 8.212x1072 6.7x 101 2.8214 1.2x 1071
FD 107% | 2.411x107 1! 3.5 x 1072 2.8214 1.1x107%
10738 | 2.499x10° 1! 3.0x 10712 2.8214 11x 1077
107V | 2.500x107 1 75x%x107° 2.8214 11x10°%
EMR - 2.500x107 T - 2.8211 -

The comparison between EMR and FD results for small € clearly validate the
method. The results for IFg (co) by FD are good and very stable when choosing dif-
ferent values for e. The approximation for IF, (0o0) by FD however requires smaller €

to provide correct results.

The transitory results are next plotted in Figures 1 and 2 for ¢ € [0, 50] and different
values of . We observe that FD provides similar results as EMR for I Fg (t) but requires

smaller € for IF, (t) to get similar results as EMR, just as in the transitory case.

0.9r

0.4

IF_(¥)

0.1

50

Figure 1: IF, (t) by finite differences (FD) for e = 10~ with i € {2, ..., 7} and by the
present method (EMR).
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10 EMR :

-2 ! ! ! !
0 10 20 30 40 50

t
Figure 2: IFg (t) by finite differences (FD) for € = 10~¢ with 4 € {1,2,4} and by the
present method (EMR).

Finally, comparing IFy (t) and IFg (t) for t < oo, we may note that, for a Weibull
distribution, the shape parameter § is much more influent on the rate of renewals than
the scale parameter a.

8 A second example
8.1 Presentation - Theoretical results

The following example is very similar to that from Boxma and al. (2005). The main
difference is that we here assume X to remain bounded (X; € [0, R]) whereas X; takes
its values in Ry in the quoted paper.

A tank is considered, which may be filled in or emptied out using a pump. This
pump may be in two different states: "in" (state 0) or "out" (state 1). The level of
liquid in the tank goes from 0 up to R. The state of the system "pump-tank" at time ¢ is
(It, Xt) where I; is the discrete state of the pump (I3 € {0,1}) and X} is the continuous
level in the tank (X; € [0, R]). The transition rate from state 0 (resp. 1) to state 1 (resp.
0) at time ¢ is A\g (X¢) (resp. A1 (X¢)). The speed of variation for the liquid level in state
0 is vo () = 7o (z) with rg (z) > 0 for all € [0, R[ and 79 (R) = 0: the level increases
in state 0 and tends towards R. Similarly, the speed in state 1 is vi (z) = —r1 (z)
with 71 (z) > 0 for all z €]0, R] and r1 (0) = 0: the level of liquid decreases in state
1 and tends towards 0. For i = 0,1, the function \; (respectively 7;) is assumed to
be continuous (respectively Lipschitz continuous) and consequently bounded on [0, R].
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The level in the tank is continuous so that p(i,1 —,2) (dy) = 02 (dy) for ¢ € {0,1}
and z € [0, R)].

In order to ensure uniform ergodicity of the process (Hs), we make the follow-
ing additional assumptions, where, for ¢ € E = {0,1} and z,y € [0, R], ngf)y is the
deterministic time for reaching y following the curve (¢, g (3, z,t)):

A1 (0) > 0 and Ao (R) > 0, (36)
R
(0) :/ L ogu=+ 37
Tzo,R —— (u) U o0 ( )
o _ ("1 _
W= ), e -

for all g € [0, R[ and all yg €]0, R]. This ensures the first jump time 77 to be finite
almost surely:

— (R 204,
P(O,zo) (T1 < 40)=1-c¢ flo oty du _ 1

) Aq(u) du
IF>(1,y0) (T1 < 40)=1—¢ 70 m) -1

We get the following result:

Proposition 5 Under assumptions (36 — 38), the process (It, Xt),~ s positive Harris
recurrent with single invariant distribution ™ given by:

7 (i,dx) = f; (z)dz

fori=0,1 and
fo () = Er o= Jrpa (HG5+3860)du _ _Kn_ Jis (65 -5065 ) du (39)
vo () ro ()
o) = = i) e G-
v (T 1 (X

for all  €]0, R[, where Kx > 0 is a normalization constant.

Remark 5 Though such results are very similar to some special case from Boxma and
al. (2005), we have better give here a quick proof due to a few differences in the results,
such as some eventual masses for 7 at the bounds of the interval in the quoted paper.

Proof Under our assumptions, one can first prove that the process (I, Xt),~o with
values in F' := {0,1} x [0, R] is p—irreducible (see Meyn and Tweedie (1993b)), with
maximal irreducibility measure ¢ = c{o,1} X I where C{o,1} 18 the counting measure on
{0,1} and [ is the Lebesgue measure on [0, R]. Besides, the process (I¢, X¢),~( is non-
evanescent, due to values in a compact set. One can also prove that it is a T-process,
namely such that there is some probability measure a (dt) and some kernel 7" such that

foralli,j € E :

+oo
/0 Py ((i,2), (. A)) a () > T (i) , (. A))

for all € [0, R] and for all Borel set A C [0, R], where T ((¢,-), (4, A)) is lower semi-
continuous (l.s.c.) for all (i,7, A) and where T ((i,z),E x [0,R]) > 0 for all (¢,z).
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Indeed, let tg > 0 be fixed. For any Borel set A C [0, R] with interior A, and any
(i,4,z) € E% x [0, R], we set

T ((lv 37) s (]7 A)) = 1{i:j}P(i,x) (Tl > to) 112; (g(i“%‘?to))
= l{i:j}c(i,w) (to) lji (g(z, xz, tO))
where
t .
(s (1) = e o0 N9,

We then have:

Py ((4,2) (5, A)) = Ei o) Ity = J, Xty € A)
> 1{i:j}c(i,z) (to) 14 (g(iv l’,to))
> T ((i,z), (4, A))

where T ((i,-), (j, A)) is Ls.c. because A is an open set, so that (It, Xt)s>q is a T-
process. Using Theorem 3.3 from Meyn and Tweedie (1993b), the process (It, Xt);~¢
now is Harris recurrent and admits a unique invariant measure 7 up to some multi-
plicative constant. Besides, m and ¢ = ¢ 1) X I are mutually absolutely continuous
(see Down and al. (1995)) and there is some positive measurable function f; such that:

7 (i,dz) = f; (z)dz

Using the fact that « (-, dz) is such that WHép)go = 0 for all ¢ continuously differentiable
on E x [0, R] with

HOLP (17 x) =T (x)@/ (1,:8) - /\1(93)90 (1,:6) + /\1(95)90 (07 ZE)
Hop (0,x) = ro(z)¢’ (0,2) — Ao(z)¢ (0,2) + Xo(2)p (1, 2)

one easily finds that

d

AM—i () fi—i (x) = Ai (2) fi (z) — T (vi (z) fi (x)) =0

for ¢ = 0,1. Solving this system of o.d.e. provides (fo, f1) of the form (39 — 40). Check-

ing that, under our assumptions, fOR fi(x) de < oo for ¢ = 0,1, we derive that 7

is a finite measure which can then be normalized in a single way into a probability

measure. Consequently, (It, X¢),~q is a positive Harris recurrent process, which ends

the proof. B a
We now prove that the process (It, Xt),~q is uniformly ergodic (H3).

Proposition 6 Under assumptions (36 — 38), assumption Hs is true, namely there is
some function f fulfilling (18) such that:

|(Pth) (i, @) — wh| < [ (2)

for all (i,z) € E x [0,R] and all t > 0.
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Proof According to Theorem 8.1 by Meyn and Tweedie (1993a), if (It, X¢),~q is
bounded in probability on average (condition 1), if there is some tg > 0 such that
the kernel > -y Pron ((4,7) ,-) possesses an everywhere non trivial countinuous com-
ponent (condition 2) and if the state space is compact (condition 3), then there is some
p € 10, 1] such that:

lim sup o P (G ), ) — 7|y =0 (41)

t—+00 (. 2)e EX[0,R]

where .||y, stands for the norm in total variation. Now, according to Theorem 3.2
from Meyn and Tweedie (1993a), as (It, Xt),~( is a g-irreducible T- process which
is positive Harris recurrent (see Proposition 5 and its proof), the process (It, Xt);~¢
is bounded in probability on average and condition 1 is true. The second condition is
clear too because setting Th to be the second jump time, we have for any tg > 0 :

Pt[) ((va) ) (.77 A))
> Plio) (T <to < To, I1y = j, Xty € A)

to
=1l—1-4) /0 Cli,z) (8) A (i, 9 (3,7, 8)) ¢(j g(i,z,s)) (to —5) 1a (9 (4,9 (1,2, 8) , 1o — 5)) ds

for any (i,j,z) € E? x [0, R] and for any Borel set A (see Cocozza-Thivent and al.
(2006b)). The kernel Py, ((i,x),-) then possesses an everywhere non trivial countinuous
component, and ), -n Pron (4, 2) ,-) does too. As the state space is compact, the three
conditions are verified and we derive that (41) is true. Consequently, there is some #;
such that, for all ¢ > ¢1, we have:

sup p P (Gy), ) = wllpy <1
(i,2)€ Ex[0,R]

and hence:
|(P¢h) (i,x) — wh| < ||h]| o "

for all (i,z) € E x [0, R] and all ¢ > ¢;. Setting

Sup(; ryeEx(o,R] [(Prh) (i,x) —wh| if t <ty
f (t) = ugtl
Ao Pt if t >t

easily provides the result. a

8.2 Quantities of interest

We are interested in two quantities: first, the proportion of time spent by the level in
the tank between two fixed bounds % —a and g + b with 0 < a,b < % and we set:

1 t
Q1 (1) = 7o (/0 1{§—a§Xs§§+b}d5>

1< t p84b
= ps (i,dz) ds
t

1/ psh1 ds (42)
tJo
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with hy (z,2) = 1[%_(17%_%] (z).
The second quantity of interest is the mean number of times the pump is turned
off, namely turned from state "in" (0) to state "out" (1) by unit time, namely:

Q2 (t) = 2By,

n Z 17, —0and I,=1}

0<s<t

1 t
= 7Epo (/0 Ao (Xs) 1{15:0}(15)

1 [t R

7/ / Ao (z) ps (0,dx) ds
tJo Jo

1t

7/ psha ds (43)
t Jo

with ho (4, 2) = 101 Ao ().

8.3 Numerical example

We assume that the system is initially in the state (Ip, Xo) = (0, R/2). Besides, we
take:

Xo () =27 ;5 ro(z) = (R—2)7 ;
AL (2) = (R—2)* ;5 ri(z) =™

for z € [0,R] with a; > 1 and p; > 1. All conditions for irreducibility are here
achieved. Our aim is to compute the importance factors with respect to p for p €
{ap, a1,70,71,a,b} both in Qi (t) and Q2 (t), except for parameters a and b which
intervenes only in Q1 (t).

We take the following numerical values:

apg = 1.05;p() = 1.2;(11 = 1.10;
p1=11R=1;a=0.2;b=0.2.

Similarly as for the first method, we test our results using finite differences (FD).
For FD, the transitory results are computed via the finite volume scheme from Eymard
and al. (2008) and the asymptotic results via (39 — 40). The results are here rather
stable choosing different values for ¢ and they are provided for ¢ = 1072 in case
p € {ao, 1,709,711} and for € = 1072 in case p € {a,b}. EMR results are computed
using the finite volume methods from Section 6. The asymptotic results are given in
Tables 2 and 3, and the transitory ones are given in Table 4 and 5 for ¢t = 2.

Table 2: TFY (c0) by FD and EMR

P FD EMR Relative error
ao | —359x1072 | =357 x10"2 | 5,40 x 10— °
a1 | —445x1072 | —443x 1072 | 3,65x10°°
0 | 3.19x 1077 317x 1071 | 6,95 x 1073
p1 | 2.80x 10T 2.78 x 1071 7,19 x 1073
a | 4.98x 1071 4.98 x 1071 1,06 x 10~
b | 5.09x10"" | 5.09x 10" 1,53 x 107




25

Table 3: IF}? (c0) by FD and EMR

p FD EMR Relative error
ap | —1.81x 1071 [ —1.81x 1071 | 1,67x 102
ar | —1.71x 107 [ —171x 1071 | 1,30 x 1077
po | —6.22x 1072 | —6.19x 1072 | 5,21 x 10~ °
p1 | —6.05x 1072 | —=6.01x10°2 | 5,58 x 10~ °

Table 4: TFSY (¢)

for t =2 by FD and EMR

P FD EMR Relative error
ao | —883x1072 | —882x10"2 | 1,08 x10°°
a1 | =9.10x 1073 | —9.05x 1073 | 5,29 x 1073
o | 4.89x 10T 4.85 x 1071 7.51x 10°°
p1 | 1.97x107 1 1.97x 1071 | 4,04 x1073
a | 248x10°T 248 x 1071 [ 4,89 x 1077
b | 711 x1071 711 x 1071 7,77 x 1070

Table 5: 1F2) (t)

for t =2 by FD and EMR

p FD EMR Relative error
ap | —2.06x 1071 [ —2.06 x 1071 | 9,12x 102
ai | —680x1072 | =6.79x1072 | 2,12x10°°
po | —1.25x 107" | —1.24x 1071 | 4,27 x 1073
p1 | —4.11x 1073 | —4.03x 107 | 2,00 x 102

The results are very similar by FD and EMR both for the asymptotic and transitory
quantities, which here again validate the method. Besides, we may observe that the
asymptotic results coincides by both methods, even in the case when the velocity
field v (¢, z) depends on the parameter (here p;), which however does not fit with our
technical assumptions from Section 5. Due to that (and to other examples where the
same remark is valid), one may conjecture that the results from Section 5 are valid
under less restrictive assumptions than those given in that section.

As for the respective importance of the different parameters in Q; (¢), one may note
that the importance factors at ¢t = 2 of ap and pg in @Q; (t) (¢ = 1,2) are clearly higher
than the importance factors of a1 and p1 in Q; (¢) (¢ = 1,2). This must be due to the
fact that the system starts from state 0, so that on [0, 2], the system spends more time
in state 0 than in state 1. The parameters linked to state 0 hence are more important
than the ones linked to state 1. Similarly, the level is increasing in state 0 so that the
upper bound b is more important than the lower one a.

In long-time run, the importance factors of ap and «y in @; (t) (i = 1,2) are
comparable, which is conform with intuition. The same remark is valid for pg and p1,
as well as for @ and b.

Finally, parameters pg and p; are more important than parameters ag and o in
Q1 (t), conversely to what happens in Q2 (¢). This seems coherent with the fact that
quantity @1 (¢) is linked to the level in the tank, and consequently to its evolution,
controlled by pp and p1, whereas quantity Q2 (¢) is linked to the transition rates, and
consequently to ag and ay.
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9 Appendix

This appendix gives a result of existence, uniqueness and regularity for the solution of
the equation :

t

ety i,2) = wo(i, 2) + ) F(s,0(s8.,.))(i,2) ds

We shall use the notations :

I =]a, b bounded interval of R, E finite set and W open subset of RK,

CY(E,W) set of bounded function from E x W to R, continuously differentiable
with respect to the variables in W with bounded partial derivatives ,

ifo e C%(E, W), V¥ is the vector of partial derivatives with respect to the variables
in W,

0 € CYE W), W] oy = max (7] oo, |V o).

CY(I, E,W) set of bounded functions ¢(s,i,z) from I x E x W to R, continuous
in the variables in I x W, such that for all s in I, the function (7,2z) — ¢(s,,2)
belongs to CY(E, W) and such that supger (s, - -)”Cf(E,W) < 400,

if ¢ belongs to CY(L, B, W), 9l co(r pwy = swPser 905+ )l cogamy:

CS(E, W) set of bounded function from E x W to R, two times continuously dif-
ferentiable with respect to the variables in W with bounded partial derivatives,

if W € CY(E, W), J(¥) is the matrix of second order derivatives with respect to the
variables in W,

0 € CHE, W), W] oy = max (9 loes V2] oo, | (2) [l0).

CS(I, E,W) set of bounded functions ¢(s,i,2) from I x E x W to R, continuous
in the variables in I x W, such that for all s in I, the function (7,z) — ¢(s,i,2)
belongs to C5(E, W) and such that supger (s, - -)||C§(E7W) < 400,

if @Y belongs to CS(L E7 W)a ”(pHCg(I,E7W) = SUPg¢cr H@(Sa oy )HCS(E,W)

Theorem 4 Let us consider the equation

t

olt,1,2) = poli ) + | Fs, (s, ))(0,2) ds

and let us suppose that :

toel,tel,ieE, ze W,
@0 belongs to C2(E, W),
if ¢ belongs to C’f(],E, W), then the application (s,i,2) — F(s,(s,.,.))(i,z) be-
longs to CY(I, E,W),
if W1 and Yo are in C%(E, W) there exists a positive constant C such that for all s
inl :

[ (s, 91) = F(s,¥2) oo < Cll¥1 = Y2l coz,w)

IVF(s,¥1) = VF(s,¥2)lloc < Cl¥1 — P2t (1w

Then there exists a unique solution which belongs to Cf(I,E, W) and is continuously
differentiable with respect to the first variable. If, in addition, we have

po belongs to C’S(E, W),
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— if ¢ belongs to CS(I,E7 W), then the application (s,i,z) — F(s,¢(s,.,.))(i,2z) be-
longs to CY(I, E,W),
— if U1 and ¥y are in Cg(E, W) there exists a positive constant C' such that for all s
in I:
[J(F(s,%1)) = J(F(s,2))lloo < Cll¥1 = Yallcp,w)

then there exists a unique solution which belongs to C’S(I,E,W) and is continuously
differentiable with respect to the first variable.

Proof Let us prove the first part of the theorem. To prove the existence of a solution,
starting from an initial function go(o) of C’f(I,E, W), we define a sequence go(") of
functions of CY(I, E,W) by:

t
e (i 2) = poliy2) + | F(s, 0™ (s,.,)) (6 2) ds (44)
to

Thanks to theorem of differentiation under integral, we can prove that these functions
are in Cf(], E, W) and that the vector of partial derivatives with respect to variables
in W satisfies:

t
V" (t,0,2) = Vo (i,2) + [ VF(s,0(s,.,.))(i, 2) ds
to

We have
eI, ) = (e < C t o™ (s, = V(5,0 Mo,y ds
and
IV, ) = Vo™t o < C t: o™ (s, = €™V (s, Mlen g,y ds

so that
t

") = " (s o mwy < C /t 1™ (s,,) = Vs, Ml en i wy ds
0

Iterating this inequality, we obtain for all ¢ in I:

Cn(t — to)"

(n) (n—1)
H(p (t7'7') - (tvw')HCi’(E’W) < K n

Hence
C"(b—a)”

n n—1
o™ =" Dl pawy < K=

Then the sequence go(") is a Cauchy sequence in the Banach space C{)(I,E, W) and
it converges to a function ¢ in CY(I, E,W) as n tends to infinity. Taking the limit in
equation (44), we obtain:

t

w(t,i,2) = vo(i, z) + ) F(s,0(s,.,.)(i,2) ds
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In order to prove the uniqueness of the solution, let ¢1,p2 € Ci’([,E,W) be two
different solutions of the equation. We have:

wmm%wwm@a/m@w@mwfmm@nnm

to
and
t
V(,Dl(t,’i,z) _VQOQ(taivz) :/ (Vf(s’@1(57~7‘)) _Vf(57<p2(57*7'))) ds
to
Then

t
11 = gt ey <€ [ lor(s.e) = eals ey m) ds
0

and by iteration

C™(t — to n
o1, ., ) = e2(t, - Mo wy < K%
Hence for all n in N:
(b —a)”
ler = e2llopammy < K=—"r——

The uniqueness follows. We can prove the second part of theorem in the same way. O
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