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Abstract In dynamic reliability, the evolution of a system is governed by a piecewise
deterministic Markov process, which is characterized by di¤erent input data. Assuming
such data to depend on some parameter p 2 P , our aim is to compute the �rst-order
derivative with respect to each p 2 P of some functionals of the process, which may
help to rank input data according to their relative importance, in view of sensitivity
analysis. The functionals of interest are expected values of some function of the process,
cumulated on some �nite time interval [0; t], and their asymptotic values per unit time.
Typical quantities of interest hence are cumulated (production) availability, or mean
number of failures on some �nite time interval and similar asymptotic quantities. The
computation of the �rst-order derivative with respect to p 2 P is made through a
probabilistic counterpart of the adjoint state method, from the numerical analysis �eld.
Examples are provided, showing the good e¢ ciency of this method, especially in case
of a large P .

Mathematics Subject Classi�cation (2000) 60K20 � 90B25 � 74S10

1 Introduction

In dynamic reliability, the time-evolution of a system is described by a piecewise de-
terministic Markov process (PDMP) (It; Xt)t�0 introduced by Davis (1984). The �rst
component It is discrete, with values in a �nite state space E. Typically, it indicates
the state (up/down) for each component of the system at time t. The second compo-
nent Xt, with values in a Borel set V � Rd, stands for environmental conditions, such
as temperature, pressure, and so on. Both components of the process interact one in
each other: the process jumps at countably many isolated random times; by a jump
from (It� ; Xt�) = (i; x) to (It; Xt) = (j; y) (with (i; x), (j; y) 2 E � V ), the transition
rate between the discrete states i and j depends on the environmental condition x just

Robert Eymard � Sophie Mercier � Michel Roussignol
Université Paris-Est, Laboratoire d�Analyse et de Mathématiques Appliquées (CNRS
UMR 8050), 5 boulevard Descartes, Champs sur Marne, F-77454 Marne-la-Vallée, France.
E-mail: robert.eymard, sophie.mercier, michel.roussignol@univ-paris-est.fr



2

before the jump and is a function x 7�! a (i; j; x). Similarly, the environmental condi-
tion just after the jump Xt is distributed according to some distribution �(i;j;x) (dy),
which depends on both components just before the jump (i; x) and on the after jump
discrete state j. Between jumps, the discrete component It is constant, whereas the
evolution of the environmental condition Xt is deterministic, solution of a set of dif-
ferential equations which depends on the �xed discrete state: given that It(!) = i for
all t 2 [a; b], we have d

dtXt = v(i;Xt(!)) for all t 2 [a; b], where v is a mapping from
E�V to V . Contrary to the general model from Davis (1993), we here assume that the
eventual reaching of the frontier of V does not entail jumps for the process (It; Xt)t�0.

Now, let (It; Xt)t�0 be a PDMP for which the jump rates a(i; j; x), the jump
distribution �(i;j;x)(dy) and the velocity �elds v (i; x) are assumed to depend on some

family of parameters P 2 Rk, where k 2 N can be quite large. Our aim here is to provide
information about the sensitivity with respect to the elements of P , of expressions with
the following form:

R�0(t) = E�0
�Z t

0
h(Is; Xs) ds

�
;

where �0 is the initial distribution of the process and h is some bounded measurable
function which can also depend on p 2 P . Such expressions include e.g. cumulative
availability or production availability on some [0; t], mean number of failures on [0; t],
mean time spent by (Xs)0�s�t between two given bounds. We are also interested in
the sensitivity with respect to p 2 P of the corresponding asymptotic quantities per
unit time, namely in quantities of the form

lim
t!+1

R�0(t)

t
:

This sensitivity analysis can be guided by the knowledge of the �rst-order deriv-
atives of R�0(t) with respect to p, where p 2 P . More speci�cally, we consider the
following normalized derivative:

IFp (t) =
p

R�0(t)

@R�0(t)

@p
; (1)

for t � +1 and p 2 P , which we call the importance factor of parameter p in R�0(t).
Such a dimensionless expression may help to rank the di¤erent parameters p 2 P ac-
cording to their relative importance in R�0(t). This kind of sensitivity analysis was
already studied by Gandini (1990) and by Cao and al. (1997) for pure jump Markov
processes with countable state space, and extended to PDMPs by Mercier and Rous-
signol (2008), with more restrictive a model than in the present paper however.

The starting point for this study is the Markov property of the process (It; Xt)t�0,
which allows to write the associated Chapman-Kolmogorov equations ful�lled by its
marginal distributions, see Davis (1993) or Cocozza-Thivent and al. (2006b). Such
equations appear as weak forms of linear �rst order hyperbolic equations, see Eymard
and al. (2008) e.g.. The expressions for the derivatives of interest can then be obtained
by solving the dual problem, as suggested by Lions (1968) for a wide class of partial
di¤erential equations. The Chapman-Kolmogorov equations and its dual problem are
here solved using �nite volume methods as provided by Cocozza-Thivent and al. (2006a)
or Eymard and al. (2008), which here prove to be well adapted. An alternate way to
compute the marginal distributions of the PDMP might be to start from the Markov
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renewal equations they ful�ll, as proposed in Chiquet and Limnios (2008) for a speci�c
case of PDMPs, or to use Monte-Carlo simulations.

In order to study the asymptotic quantities, one must put assumptions on the
process to ensure its positive Harris recurrence. These assumptions may be proved to
be true for Markov processes on general state space using techniques like those in Down
and al. (1995), Meyn and Tweedie (1993a) and Meyn and Tweedie (1993b), as is done
for both examples at the end of this paper. Alternately, one may use speci�c results
for piecewise deterministic Markov processes, as provided in Davis (1993), Costa and
Dufour (1999) and Costa and Dufour (2003).

The paper is organized as follows: technical assumptions are set up in Section 2. An
existence result for the derivatives of the transient quantities is provided in Section 3
and a computable expression is given for them in Section 4, using duality. Asymptotic
quantities are studied in Section 5. Numerical procedures are exposed in Section 6,
using �nite volume methods. Two numerical studies close the paper in Sections 7 and
8.

2 Assumptions

All the paper is written under the following general assumptions:

� for all i; j 2 E, the function x 7�! a(i; j; x) is continuous and bounded on V ,
� for all i; j 2 E and all continuous and bounded function f on V , the function
x 7�!

R
V f(y) �(i;j;x)(dy) is continuous and bounded on V ,

� for all i 2 E, the velocity �eld v(i; x) is such that the function x 7�! v(i; x) is
Lipschitz continuous and bounded by V1 = maxi2E kv (i; �) k1 > 0.

These assumptions guarantee the existence and uniqueness of the solution to the
set of di¤erential equations dx

dt = v (i; x); we denote by g (i; x; t) the single solution
(de�ned on E � V � R) such that g (i; x; 0) = x.

The jump rates a(i; j; x), the jump distribution �(i;j;x), the velocity �eld v(i; x)
and the function h are assumed to depend on some parameter p, where p belongs to
an open set O � R or Rk. All the results are written in the case where O � R but
extension to the case O � Rk is straightforward. We add exponent (p) to each quantity
depending on p, such as h(p) or R(p)�0 (t).

Under the above technical assumptions,
�
I
(p)
t ; X

(p)
t

�
t�0

is known to be a Markov

process with general state space E � V , see Davis (1993), Cocozza-Thivent and al.

(2006b), with strong Feller transition semi-group. We denote by �(p)t (j; dy) the distrib-

ution of the process
�
I
(p)
t ; X

(p)
t

�
t�0

at time t with initial distribution �0 (independent

of p) and by P (p)t (i; x; j; dy) the transition probability distribution of
�
I
(p)
t ; X

(p)
t

�
t�0

.

We then have:

R
(p)
�0 (t) =

Z t

0
�
(p)
s h(p) ds =

X
i2E

Z
V

�Z t

0
h(p) (i; x) ds

�
�
(p)
s (i; dx)

=

Z t

0
�0P

(p)
s h(p) ds =

X
i2E

Z
V

�Z t

0

�
P
(p)
s h(p)

�
(i; x) ds

�
�0 (i; dx)
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In order to prove existence and to calculate derivatives of the functional R(p)�0 , we
must give a sense to the derivatives of the transition probability distributions. With
that aim, we need the following additional assumptions that we denote as assumptions
H1 (resp. H2):

For each p in O, there is some neighborhood N(p) of p in O such that, for all
i; j 2 E � E:

� the function (x; p) 7�! a(p)(i; j; x) is bounded on V � N(p), once (resp. twice)
countinuously di¤erentiable on V�O, with all partial derivatives uniformly bounded
on V �N(p),

� for all function f (p)(x) bounded and once (resp. twice) countinuously di¤erentiable
on V �O, with all partial derivatives uniformly bounded on V �N(p), the function
(x; p) 7�!

R
V f

(p)(y) �
(p)
(i;j;x)

(dy) is bounded and once (resp. twice) countinuously

di¤erentiable on V �O, with all partial derivatives uniformly bounded on V �N(p),
� the function (x; p) 7�! v(p)(i; x) is bounded on V �N(p), once (resp. twice) countin-
uously di¤erentiable on V � O, with all partial derivatives uniformly bounded on
V �N(p),

� the function (x; p) 7�! h(p)(i; x) is bounded on V � N(p), once (resp. twice)
countinuously di¤erentiable on V � O with uniformly bounded partial derivatives
on V �N (p).

The third point implies (see e.g. Cartan (1967)) that, for all i 2 E, the func-
tion (x; p) 7�! g(p)(i; x; s), solution of the di¤erential equation dg

dt = v(p)(i; g) with
g(i; x; 0) = x, is once (resp. twice) countinuously di¤erentiable on V � N(p), with all
partial derivatives uniformly bounded on V �N(p).

Throughout the paper, under assumptions H1 or H2, for each p in O, we shall refer
to a N(p) ful�lling the four points of the assumptions without any further notice.

We may now give a sense to the derivatives of the transition probability distribu-
tions, which is done in next section.

3 Existence result

We shall use the in�nitesimal generators of both Markov processes (It; Xt)t�0 and
(It; Xt; t)t�0:

De�nition 1 Let DH0
be the set of functions f(i; x) from E � V to R such that for

all i 2 E the function x 7�! f(i; x) is bounded, continuously di¤erentiable on V and
such that the function x 7�! v(p)(i; x) � rf(i; x) is bounded on V .
For f 2 DH0

, we de�ne

H
(p)
0 f(i; x) =

X
j2E

a(p)(i; j; x)

Z
V
f(j; y) �

(p)
(i;j;x)

(dy) + v(p)(i; x) � rf(i; x)

where we set a(p)(i; i; x) = �
P
j 6=i a

(p)(i; j; x) and �(p)
(i;i;x)

= �x.

Let DH be the set of functions f(i; x; s) from E � V �R+ to R such that for all i 2 E
the function (x; s) 7�! f(i; x; s) is bounded, continuously di¤erentiable on V � R+
and such that the function (x; s) 7�! @f

@s (i; x; s) + v
(p)(i; x) � rf(i; x; s) is bounded on
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V � R+.
For f 2 DH , we de�ne

H(p)f(i; x; s) =
X
j

a(p)(i; j; x)

Z
V
f(j; y; s) �

(p)
(i;j;x)

(dy) +
@f

@s
(i; x; s)

+ v(p)(i; x) � rf(i; x; s) (2)

We then have for all f 2 DH0
:

P
(p)
t f = f +

Z t

0
H
(p)
0 P

(p)
u f du (3)

�
(p)
t f = �0f +

Z t

0
�
(p)
u H

(p)
0 f du (4)

and for all f 2 DH :

P
(p)
t f (�; �; t) = f (�; �; 0) +

Z t

0
P
(p)
u H(p)f (�; �; u) du (5)

�
(p)
t f (�; �; t) = �0f (�; �; 0) +

Z t

0
�
(p)
u H(p)f (�; �; u) du (6)

These are Chapman-Kolmogorov equations.

Thanks to these equations and to Theorem 4 in the Appendix, we get the following
result:

Proposition 1 Let f(i; x) be a function (independent of p) from E�V to R such that
for all i 2 E, the function x 7�! f(i; x) is bounded, continuously di¤erentiable on V
with uniformly bounded partial derivatives on V . Under assumptions H1, for all i 2 E,
the function (x; p) 7�!

�
P
(p)
t f

�
(i; x) is continuously di¤erentiable on V � O, with all

partial derivatives uniformly bounded on V �N (p) for all p 2 O. Under assumptions
H2, if for all i 2 E the function x 7�! f(i; x) is bounded, twice continuously di¤eren-
tiable on V with uniformly bounded partial derivatives on V , then for all i 2 E, the

function (x; p) 7�!
�
P
(p)
t f

�
(i; x) is twice continuously di¤erentiable on V � O, with

all partial derivatives uniformly bounded on V �N (p) for all p 2 O.

Proof Let p0 2 P andN(p0) be a neighborhood of p0. Setting ' (s; i; (x; p)) = P
(p)
t f(i; x)

for (i; x; p; s) 2 E � V �N (p0)�R+, the Chapman-Kolmogorov equations (3) can be
written as:

' (t; i; (x; p))

= f(i; x)

+

Z t

0

0@X
j2E

a(p)(i; j; x)

Z
V
'(u; j; (y; p)) �

(p)
(i;j;x)

(dy) + v(p)(i; x) � rx'(u; i; (x; p))

1A du

(7)

where rx stands for the gradient with respect of x. Using a similar method as in
Cocozza-Thivent and al. (2006b), we introduce the function ~' de�ned by:

~'(t; i; (x; p)) = '(t; i; (g(p)(i; x;�t); p))
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Noting that
'(t; i; (x; p)) = ~'(t; i; (g(p)(i; x; t); p));

equations (7) may now be written as:

~'(t; i; (x; p))

= f(i; x)

+

Z t

0

0@X
j2E

a(p)(i; j; g(p)(i; x;�u))
Z
V
~'(u; j; (g(p)(j; y; u); p))�

(p)

(i;j;g(p)(i;x;�u))(dy)

1A du

Using the notations of Theorem 4, we set z = (x; p), ~'0(i; z) = f(i; x) and

F (s;  ) (i; z) =
X
j2E

a(p)(i; j; g(p)(i; x;�u))
Z
V
 (j; (g(p)(j; y; s); p))�

(p)

(i;j;g(p)(i;x;�s))(dy)

for (i; x; p; s) 2 E � V � N (p0) � R+ and  : E � V � N (p0) ! R bounded and
measurable. The function ~' then satis�es the equations:

~'(t; i; z) = ~'0(i; z) +

Z t

0
F(u; ~'(u; :; :))(i; z) du:

We now check that assumptions of Theorem 4 are ful�lled and we set I to be an interval
such that [0; T ] � I. Symbols W = V �N(p0), C

b
1(E;W ), Cb1(I; E;W ) and J (F) are

as in the Appendix. With such notations, the function ~'0 belongs to C
b
1(E;W ) and

assumptions H1 imply that:

� if 	 2 Cb1(I; E;W ), then F(s; 	(s; :; :))(i; (x; p)) is in Cb1(I; E;W ),
� if 	 2 Cb1(E;W ), then for all s 2 I, F(s; 	) and rF(s; 	) are uniformly Lipschitz
with respect to 	 .

Assumptions H2 and ~'0 2 Cb2(E;W ) imply that:

� if 	 2 Cb2(I; E;W ), then F(s; 	(s; :; :))(i; (x; p)) is in Cb2(I; E;W ),
� if 	 2 Cb2(E;W ), then for all s 2 I, F(s; 	), rF(s; 	) and J (F) (s; 	) are uni-
formly Lipschitz with respect to 	 .

All required assumptions are then checked, which provides the result. ut

Remark 1 Using the explicit form of transition probabilities (see Cocozza-Thivent and

al. (2006b)), the functional f 7�! @
@p

�
P
(p)
t f

�
(i; x) appears to be a continuous linear

functional of f which involves f and @f
@xk

for 1 � k � d (and possibly other deriv-
atives). Limiting this functional to the set of functions f such that x 7�! f(i; x) is
in�nitely di¤erentiable with a compact support for all i 2 E, it may then be seen
as a distribution. We actually de�ne this functional on the greater space of bounded
continuously di¤erentiable functions with uniformly bounded partial derivatives and
we use the following notation:

@

@p

�
P
(p)
t f

�
(i; x) =

*
@P

(p)
t

@p
; f

+
(i; x)

Next corollary is straightforward.
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Corollary 1 Under assumptions H1, the function (x; p) 7�!
�
P
(p)
t h(p)

�
(i; x) is con-

tinuously di¤erentiable on V � O for all i 2 E, with all partial derivatives uniformly
bounded on V �N (p) for all p 2 O. Besides:

@

@p

�
P
(p)
t h(p)

�
(i; x) =

*
@P

(p)
t

@p
; h(p)

+
(i; x) +

 
P
(p)
t

@h(p)

@p

!
(i; x)

for all (i; x; t; p) 2 E � V � R+ �O.

We derive the following theorem:

Theorem 1 Under assumptions H1, the function p 7�! R
(p)
�0 (t) is countinuously dif-

ferentiable with respect to p and

@

@p

�
R
(p)
�0 (t)

�
=

Z t

0

X
i2E

Z
V

*
@P

(p)
u

@p
; h(p)

+
(i; x) �0(i; dx) du

+

Z t

0

X
i2E

X
j2E

Z
V

Z
V

@

@p
h(p)(j; y)P

(p)
u (i; x; j; dy)�0(i; dx) du

=

Z t

0

*
@�
(p)
u

@p
; h(p)

+
du+

Z t

0
�
(p)
u
@h(p)

@p
du (8)

where we set: *
@�
(p)
u

@p
; h(p)

+
=
X
i2E

Z
V

*
@P

(p)
u

@p
; h(p)

+
(i; x) �0(i; dx): (9)

Remark 2 Assumption on h(p) in H1 may be generalized to the case where h(p)(i; x)
is continuously di¤erentiable only for almost all (a.a.) x 2 V , where a.a. means with
respect to Lebesgue measure.

Our purpose now is to compute this derivative. The marginal distribution �(p)u (j; dy)

may be estimated by di¤erent methods, as indicated in the introduction. However, we
do not know how to compute directly the derivative of the marginal distribution which
appear in the above expression. We now transform it in order to make it easier to
compute.

4 Results in the transient case

Let us �rst de�ne the notion of importance functions.

De�nition 2 We say that a function '(p)t 2 DH is the importance function associated
to the function h(p) and to t if:

� '
(p)
t is solution of the di¤erential equation H(p)'

(p)
t (i; x; s) = h(p) (i; x) for all

(i; x; s) 2 E � V � [0; t[,
� '

(p)
t (i; x; t) = 0 for all (i; x) in E � V .
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Proposition 2 Let t > 0. Under assumptions H1, the importance function associated
to
�
h(p); t

�
exists, is unique, is continuously di¤erentiable on V �O, bounded with all

partial derivatives uniformly bounded on V � N(p) for all p 2 O. Under assumptions

H2, the importance function associated to
�
h(p); t

�
is moreover twice continuously

di¤erentiable on V �O with all partial derivatives uniformly bounded on V �N(p) for
all p 2 O.

Proof Let '(p) 2 DH (eventually depending on p) and let us set:

~'(p) (i; z; s) = '(p) (i; g (i; z;�s) ; t� s) (10)

for all (i; z; s) 2 E�V � [0; t]. The function ~'(p) is bounded, continuously di¤erentiable
on V with partial derivative with respect of time given by:

@ ~'(p)

@s1
(i; z; s)

= �@'
(p)

@s1

�
i; g(p) (i; z;�s) ; t� s

�
�r'(p)

�
i; g(p) (i; z;�s) ; t� s

�
� v(p)

�
i; g(p) (i; z;�s)

�
(11)

The function '(p) and ~'(p) are in one-to-one correspondence with:

'(p) (i; z; t� s) = ~'(p)
�
i; g(p) (i; z; s) ; s

�
(12)

for all (i; z; s) 2 E � V � [0; t]. Using (10� 11), we get:

H(p)'(p)(i; g(p) (i; z;�s) ; t� s)

=
X
j

a(p)(i; j; g(p) (i; z;�s))
Z
V
'(p)(j; y; t� s)�

(p)

(i;j;g(p)(i;z;�s))(dy)�
@ ~'(p)

@s1
(i; z; s)

= �H(p) ~'(p) (i; z; s)

where

�H(p) ~'(p) (i; z; s)

=
X
j2E

a(p)(i; j; g(p) (i; z;�s))
Z
V
~'(p)

�
j; g(p) (j; y; s) ; s

�
�
(p)

(i;j;g(p)(i;z;�s))(dy)

� @ ~'(p)

@s1
(i; z; s) :

The problem now resumes to show existence, uniqueness and regularity of ~'(p) such
that

�H(p) ~'(p) (i; z; s) = h(p)
�
i; g(p) (i; z;�s)

�
(13)

for all (i; z; s) 2 E�V � [0; t] with ~'(p) (i; z; 0) = '(p) (i; z; t) = 0 for all (i; z) 2 E�V .
The o.d.e. (13) may be written as:

~'(p)(i; z; t) =

Z t

0
R(p)

�
~'(p) (�; �; s) ; s

�
(i; z) ds
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with

R(p)
�
~'(p) (�; �; s) ; s

�
(i; z)

=
X
j2E

a(p)(i; j; g(p) (i; z;�s))
Z
V
~'(p)

�
j; g(p) (j; y; s) ; s

�
�
(p)

(i;j;g(p)(i;z;�s))(dy)

� h(p)
�
i; g(p) (i; z;�s)

�
:

Theorem 4 from the Appendix then provides the result in the same way as for Propo-
sition 1. ut

Next lemma provides a duality result based on the de�nition of '(p)t , which trans-

ports the di¤erentiation with respect of p from the marginal distribution �(p)s to oper-
ator H(p).

Lemma 1 Under assumptions H2, we have:Z t

0

*
@�
(p)
s

@p
;H(p)'

(p)
t (�; �; s)

+
ds = �

Z t

0
�
(p)
s

@H(p)

@p
'
(p)
t (�; �; s) ds

where we set:

@H(p)

@p
' (i; x; s) :=

X
j2E

@a(p)

@p
(i; j; x)

Z
V
'(j; y; s) �

(p)
(i;j;x)

(dy)

+
X
j2E

a(p)(i; j; x)
@

@p

�Z
V
'(j; y; s) �

(p)
(i;j;x)

(dy))

�

+
@v(p)

@p
(i; x) � r'(i; x; s)

for all ' 2 DH and all (i; x; s) 2 E � V � R+.

Proof Thanks to Proposition 2, functions '(p)t (i; x; s) and @'
(p)
t
@p (i; x; s) are in DH . We

�rst know from the Chapman-Kolmogorov equation (6) applied to '(p)t that:Z t

0
�
(p)
s H(p)'

(p)
t (�; �; s) ds = �

(p)
t '

(p)
t (�; �; t)� �0'

(p)
t (�; �; 0) = ��0'(p)t (�; �; 0)

due to '(p)t (�; �; t) = 0. By di¤erentiating this expression with respect to p, we derive:Z t

0

*
@�
(p)
s

@p
;H(p)'

(p)
t (�; �; s)

+
ds+

Z t

0
�
(p)
s
@H(p)

@p
'
(p)
t (�; �; s) ds

+

Z t

0
�
(p)
s H(p) @'

(p)
t

@p
(�; �; s) ds = ��0

@'
(p)
t

@p
(�; �; 0) : (14)

Chapman-Kolmogorov equation (6) applied to @'
(p)
t
@p gives:Z t

0
�
(p)
s H(p) @'

(p)
t

@p
(�; �; s) ds = �

(p)
t

@'
(p)
t

@p
(�; �; t)� �0

@'
(p)
t

@p
(�; �; 0)

= ��0
@'

(p)
t

@p
(�; �; 0) :

Hence the result, substituting this last outcome in (14). ut
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We easily derive the following result, using the de�nition of R(p)�0 (t) and of '
(p)
t (�; �; s).

Theorem 2 Under assumptions H2, we have:

@R
(p)
�0

@p
(t) =

Z t

0
�
(p)
s
@h(p)

@p
ds�

Z t

0
�
(p)
s
@H(p)

@p
'
(p)
t (�; �; s) ds; (15)

where '(p)t is the importance function associated to
�
h(p); t

�
.

Remark 3 In case that R�0 (t) depends on a family of parameters P , the computation

of all
@R(P )

�0
@p (t) for each p 2 P consequently requires only one single computation of

both �(P )s and '(P )t , and simple summations on [0; t] for each value of p. This is to be
compared to the usual �nite di¤erences method, which requires one �rst evaluation of

�
(P )
s and another evaluation of �(Pp;")s for each value of p 2 P and some " > 0, where
Pp;" stands for the family P in which parameter p has been changed into p + ". In
case of a large P , the present methods, which only requires two e¤ective computations,
consequently appears as cheaper than �nite di¤erences.

In applications, the importance function will generally be computed numerically.
An analytical form is however available, which is also useful for the asymptotic study:

Lemma 2 Let t > 0. Under assumptions H1, the importance function associated to�
h(p); t

�
is given by:

'
(p)
t (i; x; s) =

(
�
R t�s
0

�
P
(p)
u h(p)

�
(i; x) du if 0 � s � t

0 otherwise
(16)

for all (i; x) 2 E � V .

Proof Let '(p)t be the function de�ned by (16). It is clear that '(p)t (i; x; t) = 0 for all

(i; x) 2 E � V and thanks to Proposition 1, the function '(p)t is in DH . Besides, for
0 � s < t, we have:�

H(p)'
(p)
t

�
(�; �; s) = �H(p)

Z t�s

0
P
(p)
u h(p) du

= �H(p)
0

�Z t�s

0
P
(p)
u h(p) du

�
� @

@s

�Z t�s

0
P
(p)
u h(p) du

�
= �

Z t�s

0
H
(p)
0

�
P
(p)
u h(p)

�
du+ P

(p)
t�sh

(p)

= h(p)

due to the Chapman-Kolmogorov equation (3), which completes the proof. ut

We easily derive the following Corollary from Theorem 2 and the previous lemma.

Corollary 2 Under assumptions H2, we have:

@R
(p)
�0

@p
(t) =

Z t

0
�
(p)
s
@h(p)

@p
ds+

Z t

0
�
(p)
s
@H(p)

@p

�Z t�s

0
P
(p)
u h(p) du

�
ds (17)

Equation (17) is an extension of the results of Gandini (1990) for pure jump Markov
processes with countable state space.
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5 Asymptotic results

We are now interested in asymptotic results and we need to assume the process
(It; Xt)t�0 to be uniformly ergodic, according to the following assumptions H3:

� the process (It; Xt)t�0 is positive Harris-recurrent with �
(p) as unique stationary

distribution,
� for each p 2 O, there exists a function f (p) such thatZ +1

0
f (p)(u) du < +1;

Z +1

0
u f (p)(u) du < +1; lim

u!+1
f (p)(u) = 0; (18)

and ����P (p)u h(p)
�
(i; x)� �(p)h(p)

��� � f (p)(u) (19)

for all (i; x) 2 E � V and all u � 0.

As already noted in the introduction, such assumptions may be proved to be true
by using results for Markov processes on general state spaces or speci�c results for
piecewise deterministic Markov processes (see the introduction for references).

In order not to give too technical assumptions di¢ cult to check in practice, we con-
straint our asymptotic study to the special case where only the jump rates a(p)(i; j; x)
and the function h(p) (i; x) depend on the parameter p. The quantities �(i;j;x) and
v(i; x) are consequently assumed to be independent of p. Assumptions H2 are then
substituted by assumptions H02, where conditions on �(i;j;x) and on v(i; x) are re-
moved.

We now transform (17) in view of studying its asymptotic expression.

Lemma 3 Under assumptions H2 and H3, we have:

1

t

@R
(p)
�0

@p
(t) =

1

t

Z t

0
�
(p)
s
@h(p)

@p
ds

+
1

t

Z t

0
�
(p)
s
@H(p)

@p

�Z t�s

0

�
P
(p)
u h(p) � �(p)h(p)

�
du

�
ds (20)

Proof The �rst term is clear. Besides, setting 1 to be the constant function equal to 1,

we have: @H
(p)

@p 1 = 0 since H(p)1 = 0. As �(p)h(p) is a constant (independent of (i; x)),
we derive

@H(p)

@p

�
�(p)h(p)

�
=
�
�(p)h(p)

� @H(p)

@p
1 = 0

and consequently:

@H(p)

@p

�Z t�s

0
�(p)h(p) du

�
= (t� s)

@H(p)

@p

�
�(p)h(p)

�
= 0:

Whence the result. ut

We may now prove existence and provide an asymptotic expression for 1t
@R(p)

�0
@p (t).
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Theorem 3 Let us assume that �(i;j;x) and v(i; x) are independent of p and that H02,
H3 are true. Then:

Uh(p) (i; x) :=

Z +1

0

��
P
(p)
u h(p)

�
(i; x)� �(p)h(p)

�
du

exists for all (i; x) 2 E � V and Uh(p) is element of DH0
. Besides:

lim
t!+1

1

t

@R
(p)
�0

@p
(t) = �(p)

@h(p)

@p
+ �(p)

@H
(p)
0

@p
Uh(p) (21)

where we set:

@H
(p)
0

@p
'0 (i; x) :=

X
j2E

@a(p)

@p
(i; j; x)

Z
V
'0(j; y) �(i;j;x)(dy)

for all '0 2 DH0
and all (i; x) 2 E � V .

Proof Due to H3, the quantity Uh(p) (i; x) is clearly de�ned for all (i; x) 2 E � V and
Uh(p) is element of DH0

. Under H3, we know that:

lim
t!+1

1

t

Z t

0
�
(p)
s '(p) ds = �(p)'(p) (22)

for each measurable and bounded '(p). The �rst term in right side of (20) con-
sequently converges to the �rst term in (21). For the second term, setting Us :=R+1
s

�
P
(p)
u h(p) � �(p)h(p)

�
du, we have:

1

t

Z t

0
�
(p)
s
@H(p)

@p

�Z t�s

0

�
P
(p)
u h(p) � �(p)h(p)

�
du

�
ds

=
1

t

Z t

0
�
(p)
s
@H(p)

@p
Uh(p) ds� 1

t

Z t

0
�
(p)
s
@H(p)

@p
Ut�s ds:

By assumption, the function @H(p)

@p Uh(p) is bounded and independent of time, and
consequently:

lim
t!+1

1

t

Z t

0
�
(p)
s
@H(p)

@p
Uh(p) ds = �(p)

@H(p)

@p
Uh(p) = �(p)

@H
(p)
0

@p
Uh(p):

It now remains to prove that

lim
t!+1

1

t

Z t

0
�
(p)
s
@H(p)

@p
Ut�s ds = 0:

We have: �����@H(p)

@p
Ut�s(i; x)

����� � X
j2E

�����@a(p)@p
(i; j; x)

�����
����Z
V
Ut�s(j; y)�(i;j;x)(dy)

����
As jUs(i; x)j �

R+1
s f (p)(u) du due to H3, we have:�����@H(p)

@p
Ut�s(i; x)

����� � K

Z +1

t�s
f (p)(u) du
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and �����1t
Z t

0
�
(p)
s
@H(p)

@p
Ut�s ds

����� � K
1

t

Z t

0

�Z +1

t�s
f (p)(u) du

�
ds

� K
1

t

Z +1

0
u f (p)(u) du:

This ends the proof. ut

The previous theorem provides an extension of the results given in Cao and al.
(1997) for pure jump Markov processes with countable state space.

Next proposition gives a tool to compute the function Uh(p).

Proposition 3 Let us assume that �(i;j;x) and v(i; x) are independent of p and that

H02, H3 are true. Then the function Uh(p) is the unique solution of the following
ordinary di¤erential equation:

H
(p)
0 Uh(p) (i; x) = �(p)h(p) � h(p)(i; x) (23)

for all (i; x) 2 E � V such that �(p)Uh(p) = 0.

Proof Under assumptions H3, we clearly have �(p)Uh(p) = 0 by Fubini�s theorem. We
now check that Uh(p) is solution of (23): under H3, we may write

H
(p)
0 Uh(p) (i; x) = H

(p)
0

Z +1

0

��
P
(p)
u h(p)

�
(i; x)� �(p)h(p)

�
du

=

Z +1

0
H
(p)
0 P

(p)
u h(p) (i; x) du

since H(p)
0

�
�(p)h(p)

�
=
�
�(p)h(p)

�
H
(p)
0 1 = 0. We derive:

H
(p)
0 Uh(p) (i; x) = lim

t!+1

Z t

0

�
H
(p)
0 P

(p)
u h(p) (i; x)

�
du

= lim
t!+1

P
(p)
t h(p) (i; x)� h(p) (i; x) (Chapman-Kolmogorov equation)

= �(p)h(p) � h(p) (i; x) ;

which shows that Uh(p) is solution of (23). Now, let ' be the di¤erence between two

solutions '1, '2 of (23) such that �
(p)'1 = �(p)'2 = 0. We then have: H

(p)
0 ' = 0 and

consequently: PtH
(p)
0 ' = 0 for all t > 0. Using PtH

(p)
0 ' = H

(p)
0 Pt' (see Davis (1993)

e.g.) and (3), we get Pt' = ' and:

' (i; x) = lim
t!+1

1

t

Z t

0
(Pt') (i; x) = �(p)'

for all (i; x) 2 E � V . Whence the result, using �(p)' = �(p)'1 � �(p)'2 = 0. ut

Remark 4 Just as for the transitory results, in the case when the data depend on some

family of parameters P , the evaluation of all limt!+1 1
t

@R(P )
�0
@p (t) only requires one

single computation of both �(P ) and Uh(P ), which seems cheaper than �nite di¤erences
methods in case of a large P .
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6 Numerical procedure

In this section, we propose some method for the numerical evaluation of
@R(p)

�0
@p (t) and

of its asymptotic rate per unit time when t! +1, based on the implicit �nite volume
scheme given in Eymard and al. (2008). These methods are obtained by translating
the continuous procedure described above into the discrete setting of �nite volume
methods, and are provided without proof.

6.1 Principle of the numerical scheme in the transient case

Here, we consider the general case where any quantity (except �0) may depend on p. We
consider a mesh (or partition)M of V � Rd which satis�es some regularity hypotheses
(details are given in Eymard and al. (2008)), and some time step �t > 0. Realizing a
discrete version of the Chapman-Kolmogorov equation (4) and starting from �(0) = �0,

the scheme resumes to compute the family of real values
�
�
(n)
i;K

�
(i;K;n)2E�M�N

, such

that �(n)i;K is an approximation of
R
K �

(p)
t (i;dx) for t 2 [n�t; (n+ 1) �t[.

Introducing an in�nite matrix A =
�
A(i;K)(j;L)

�
(i;K);(j;L)2E�M

, the scheme can

be written as X
(j;L)2E�M

A(i;K)(j;L)�
(n+1)
j;L +

�
(n+1)
i;K � �

(n)
i;K

�t
= 0

for all (i;K; n) 2 E�M�N (see the quoted reference for the detailed coe¢ cients), or
equivalently

A�(n+1) +
�(n+1) � �(n)

�t
= 0 (24)

for all n 2 N, setting �(n) :=
�
�
(n)
i;K

�
(i;K)2E�M

.

For t =M�t with M � 1, a discrete approximation of R(p)�0 (t) then is �R
(p)
M with:

�R
(p)
M =

MX
n=1

X
i2E

X
K2M

�t �
(n)
i;K
�hi;K (25)

and

�hi;K =
1

m(K)

Z
K
h(p) (i; x) dx (26)

for all (i;K) 2 E �M, where m(K) stands for the d�dimensional Lebesgue measure
of K.

In order to mimic the procedure used to evaluate @
@pR

(p)
�0 (t) in (15), we de�ne a

discrete version �H of H:

�
�H (�)

�(n)
= At�(n) +

�(n) � �(n+1)

�t
(27)

for all bounded families � =
�
�
(n)
i;K

�
(i;K;n)2E�M�N

.
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We next introduce a discrete approximation of the importance functions 't as

�' =
�
�'
(n)
i;K

�
(i;K;n)2E�M�N

, single bounded family solution of:

�
�H ( �')

�(n)
= �h for all n 2 f0; :::;M � 1g (28)

with �'
(n)
i;K = 0 for all (i;K) 2 E �M and all n � M . The mathematical study of

the well-posedness of (27) and of the resolution of (28) might be driven under classical
hypothesis.

Following the same calculation steps as in the continuous case, we now get:

@

@p

�
�R
(p)
M

�
= �t

X
i2E

X
K2M

MX
n=1

�
(n)
i;K

 
@

@p
�hi;K �

�
@ �H

@p
( �')

�(n�1)
i;K

!
(29)

where, for all (i;K; n) 2 E �M� N:�
@ �H

@p
( �')

�(n)
i;K

=
X

(j;L)2E�M

@A(j;L)(i;K)

@p
�'
(n)
j;L:

In the case when the data depends on a family P of parameters, the numerical compu-

tation of @
@p

�
R
(P )
M

�
for all p 2 P hence requires to solve two implicit volume schemes

provided by (24) and (28), which are independant on the choice of p in P (see Remark
3). Due to the de�nition of �H (see (27)), such schemes appear as dual schemes, which
clearly simpli�es their implementation. Also, the di¤erent summations required for
each p 2 P for the estimation of (29) are made simultaneously by solving the schemes,
which helps saving CPU time and memory stocking size too.

6.2 Asymptotical numerical procedure

Following the discretization technique introduced in the transient case, a discrete so-
lution of the asymptotic problem is a family of real values

�
��i;K

�
(i;K)2E�M, such

that ��i;K is an approximation of the quantity
R
K �(p) (i;dx). Using again the in�nite

matrix A =
�
A(i;K)(j;L)

�
(i;K);(j;L)2E�M

, the asymptotic scheme can then be written

as: X
(j;L)2E�M

A(i;K)(j;L)��j;L = 0 (30)

for all (i;K) 2 E �M, under the constraintX
(j;L)2E�M

��j;L = 1: (31)

Equivalently, the scheme writes:

A�� = 0 and �� � 1 = 1; (32)

where 1 is the constant family with the required dimension and generic term equal
to 1, and where � stands for the dot product (x � y =

P
(i;K)2E�M xi;Kyi;K for all
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x =
�
xi;K

�
(i;K)2E�M and y =

�
yi;K

�
(i;K)2E�M). This scheme is assumed to have a

unique solution.

An approximation �R
(p)
�� of limt!+1 1

tR
(p)
�0 (t) now is:

�R
(p)
�� =

X
i2E

X
K2M

��i;K�hi;K = �� � �h;

where �hi;K is provided by (26) and �h =
�
�hi;K

�
(i;K)2E�M.

In the same way as in the transient case, we mimic the continuous procedure and
we consider the discrete version �H0 of H0, given by:�

�H0 (�)
�
= At �

for all bounded families � =
�
�i;K

�
(i;K)2E�M.

We next introduce a discrete version �U of the potential function Uh(p), solution to

�H0 �U =
�
�� � �h

�
1� �h and �� � �U = 0; (33)

which is assumed to have a unique solution. We �naly derive the discrete approximation
@ �R

(p)
��

@p of limt!+1 1
t

@R(p)
�0
@p (t), which is given by:

@ �R
(p)
��

@p
= �� � @

�h

@p
+ �� �

�
@ �H0
@p

�U

�
with �

@ �H0
@p

�U

�
i;K

=
X

(j;L)2E�M

@A(j;L)(i;K)

@p
�Uj;L

for all (i;K) 2 E �M.

The same remarks as in the transitory case are still valid here and in case when the

data depends on a family P of parameters, the numerical computation of all @
�R
(p)
��

@p for
each p 2 P requires to solve exactly two dual volume schemes, provided by (32) and
(33).

7 A �rst example

7.1 Presentation - Theoretical results

A single component is considered, which is perfectly and instantaneously repaired at
each failure. The distribution of the life duration of the component (T1) is absolutely
continuous with respect of Lebesgue measure, with E (T1) > 0. The successive life
durations make a renewal process. The time evolution of the component is described
by the process (Xt)t�0 where Xt stands for the time elapsed at time t since the last
instantaneous repair (the backward recurrence time). There is one single discrete state
so that component It is here unnecessary. The failure rate for the component at time
t is � (Xt) where � (�) is some non negative continuous and bounded function. The
process (Xt)t�0 is "renewed" after each repair so that �(x) (dy) = �0 (dy) and the
evolution of (Xt)t�0 between renewals is given by g (x; t) = x+ t.
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We are interested in the rate of renewals on [0; t], namely in the quantity Q (t) such
that:

Q (t) =
R (t)

t
=
1

t
E0
�Z t

0
� (Xs) ds

�
where R (t) is the renewal function associated to the underlying renewal process.

The function � (x) is assumed to depend on some parameter p > 0 and to meet
with H02 (= H2) requirement. (Here, both �(x) (dy) and v (x) are independent of p).

Assuming E
�
T
(p)
1

�
< +1, the process is known to have a unique stationary dis-

tribution �(p) which has the following probability density function (p.d.f.):

f
(p)
� (x) =

P
�
T
(p)
1 > x

�
E
�
T
(p)
1

� =
e�

R x
0 �

(p)(u)du

E
�
T
(p)
1

� : (34)

Besides:

Q(p) (1) = 1

E0
�
T
(p)
1

� = 1R+1
0 e�

R v
0 �

(p)(u)dudv
; (35)

which is a direct consequence from the key renewal theorem.
We now provide conditions which ensures the process to be uniformly ergodic (H3):

Proposition 4 Let us assume that E
�
e�T1

�
< +1 for some 0 < � < 1 and that T1

is new better than used (NBU), namely such that for all x; t � 0, we have �F (x+ t) �
�F (x) �F (t), where �F is the survival function �F (t) = P (T1 > t). Then, there are some
C < +1 and 0 < � < 1 such that:���P (p)t �(p) (x)� �(p)�(p)

��� � C�t

for all x 2 R+.

Proof We use the following result by Konstantopoulos and Last (1999): assume that

E
�
e�T1

�
< +1 for some � > 0. Let � > 0 be such that � < � or � � � ^ 1 and de�ne

W�;� (x) = 1 + e(���)x
Z +1

0
e�t

�F (x+ t)
�F (x)

dt � 1:

Then there are positive constants C1 < +1 and � < 1 such that


P (p)t (x; �)� �(p)




W�;�

� C1W�;� (x) �
t

where

k�kW�;�
= sup
jgj�W�;�

j�gj :

Now, under the assumption E
�
e�T1

�
< +1 for some 0 < � < 1, let us choose � = �.

As T1 is NBU, we know that
�F (x+t)
�F (x)

� �F (t) for all x; t � 0. Setting f to be the p.d.f.
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of T1, we derive:

W�;� (x) � 1 +
Z +1

0
e�t �F (t) dt

= 1 +

Z +1

0
e�t
Z +1

t
f (u) du dt

= 1 +
1

�

�
E
�
e�T1

�
� 1
�

< +1

using Fubini�s theorem. From the quoted result, we now derive existence of C2 < +1
and � < 1 such that 


P (p)t (x; �)� �





W�;�

� C2�
t

which easily provides the result due to

���� �(p)

k�(p)k1

���� � 1 �W�;�. ut

7.2 Numerical results

We assume that T1 is distributed according to some Weibull distribution, which is
slightly modi�ed to meet with our assumptions:

�(�;�) (x) =

8><>:
��x��1 if x < x0
P�;�;x0 (x) if x0� x < x0+2

�� (x0 + 1)
��1 if x0+2 � x

where (�; �) 2 O =]0;+1[�]2;+1[, x0 is chosen such that T1 > x0 is a rare event

(i.e. P0 (T1 > x0) = e��x
�
0 is small) and P�;�;x0 (x) is some smoothing function which

makes x 7�! �(�;�) (x) continuous and non decreasing on R+. For such a failure rate,
it is easy to check that assumptions H02 and H3 are true, using Proposition 4.

Taking (�; �) =
�
10�5; 4

�
and x0 = 100 (which ensures P0 (T1 > x0) ' 5�10�435),

we compute IFp (t) =
p

Q(p)(t)
@Q(p)(t)

@p and the asymptotic value IFp(1) for p 2 f�; �g
by the �nite volume methods (EMR) from Section 6.

For comparison purpose, we also compute such quantities by �nite di¤erences (FD)
using:

@Q (t)

@p
' 1

"

�
Q(p+") (t)�Q(p) (t)

�
for some small ". As for the the transitory FD quantities, we use the algorithm from
Mercier (2007) which provides an estimate for the renewal function R(p) (t) and hence

for Q(p) (t) = R(p)(t)
t . For the asymptotic FD quantities, we use the exact formula (35).

The asymptotic results are gathered in Table 1.

Table 1: IF� (1) and IF� (1)
by �nite di¤erences (FD) and by the present method (EMR).
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Relative error Relative error
" IF� (1) between FD IF� (1) between FD

and EMR and EMR
10�2 4.625�10�3 9:8� 10�1 2.8242 1:1� 10�3
10�4 8.212�10�2 6:7� 10�1 2.8214 1:2� 10�4

FD 10�6 2.411�10�1 3:5� 10�2 2.8214 1:1� 10�4
10�8 2.499�10�1 3:0� 10�4 2.8214 1:1� 10�4
10�10 2.500�10�1 7:5� 10�5 2.8214 1:1� 10�4

EMR - 2.500�10�1 - 2.8211 -

The comparison between EMR and FD results for small " clearly validate the
method. The results for IF� (1) by FD are good and very stable when choosing dif-
ferent values for ". The approximation for IF� (1) by FD however requires smaller "
to provide correct results.

The transitory results are next plotted in Figures 1 and 2 for t 2 [0; 50] and di¤erent
values of ". We observe that FD provides similar results as EMR for IF� (t) but requires
smaller " for IF� (t) to get similar results as EMR, just as in the transitory case.
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Figure 1: IF� (t) by �nite di¤erences (FD) for " = 10�i with i 2 f2; :::; 7g and by the
present method (EMR).
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Figure 2: IF� (t) by �nite di¤erences (FD) for " = 10
�i with i 2 f1; 2; 4g and by the

present method (EMR).

Finally, comparing IF� (t) and IF� (t) for t � 1, we may note that, for a Weibull
distribution, the shape parameter � is much more in�uent on the rate of renewals than
the scale parameter �.

8 A second example

8.1 Presentation - Theoretical results

The following example is very similar to that from Boxma and al. (2005). The main
di¤erence is that we here assume Xt to remain bounded (Xt 2 [0; R]) whereas Xt takes
its values in R+ in the quoted paper.

A tank is considered, which may be �lled in or emptied out using a pump. This
pump may be in two di¤erent states: "in" (state 0) or "out" (state 1). The level of
liquid in the tank goes from 0 up to R. The state of the system "pump-tank" at time t is
(It; Xt) where It is the discrete state of the pump (It 2 f0; 1g) and Xt is the continuous
level in the tank (Xt 2 [0; R]). The transition rate from state 0 (resp. 1) to state 1 (resp.
0) at time t is �0 (Xt) (resp. �1 (Xt)). The speed of variation for the liquid level in state
0 is v0 (x) = r0 (x) with r0 (x) > 0 for all x 2 [0; R[ and r0 (R) = 0: the level increases
in state 0 and tends towards R. Similarly, the speed in state 1 is v1 (x) = �r1 (x)
with r1 (x) > 0 for all x 2]0; R] and r1 (0) = 0: the level of liquid decreases in state
1 and tends towards 0. For i = 0; 1, the function �i (respectively ri) is assumed to
be continuous (respectively Lipschitz continuous) and consequently bounded on [0; R].
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The level in the tank is continuous so that � (i; 1� i; x) (dy) = �x (dy) for i 2 f0; 1g
and x 2 [0; R].

In order to ensure uniform ergodicity of the process (H3), we make the follow-
ing additional assumptions, where, for i 2 E = f0; 1g and x; y 2 [0; R], � (i)x;y is the
deterministic time for reaching y following the curve (t; g (i; x; t)):

�1 (0) > 0 and �0 (R) > 0; (36)

�
(0)
x0;R

=

Z R

x0

1

r0 (u)
du = +1 (37)

�
(1)
x0;0

=

Z y0

0

1

r1 (u)
du = +1 (38)

for all x0 2 [0; R[ and all y0 2]0; R]. This ensures the �rst jump time T1 to be �nite
almost surely:

P(0;x0) (T1 < +1) = 1� e
�
RR
x0

�0(u)
r0(u)

du
= 1

P(1;y0) (T1 < +1) = 1� e
�
R y0
0

�1(u)
r1(u)

du
= 1

We get the following result:

Proposition 5 Under assumptions (36� 38), the process (It; Xt)t�0 is positive Harris
recurrent with single invariant distribution � given by:

� (i;dx) = fi (x) dx

for i = 0; 1 and

f0 (x) =
K�
v0 (x)

e
�
R x
R=2

�
�1(u)
v1(u)

+
�0(u)
v0(u)

�
du
=

K�
r0 (x)

e
R x
R=2

�
�1(u)
r1(u)

��0(u)
r0(u)

�
du

(39)

f1 (x) = �
K�
v1 (x)

e
�
R x
R=2

�
�1(u)
v1(u)

+
�0(u)
v0(u)

�
du
=

K�
r1 (x)

e
R x
R=2

�
�1(u)
r1(u)

��0(u)
r0(u)

�
du

(40)

for all x 2]0; R[, where K� > 0 is a normalization constant.

Remark 5 Though such results are very similar to some special case from Boxma and
al. (2005), we have better give here a quick proof due to a few di¤erences in the results,
such as some eventual masses for � at the bounds of the interval in the quoted paper.

Proof Under our assumptions, one can �rst prove that the process (It; Xt)t�0 with
values in F := f0; 1g � [0; R] is '�irreducible (see Meyn and Tweedie (1993b)), with
maximal irreducibility measure ' = cf0;1g � l where cf0;1g is the counting measure on
f0; 1g and l is the Lebesgue measure on [0; R]. Besides, the process (It; Xt)t�0 is non-
evanescent, due to values in a compact set. One can also prove that it is a T-process,
namely such that there is some probability measure a (dt) and some kernel T such that
for all i; j 2 E : Z +1

0
Pt ((i; x) ; (j; A)) a (dt) � T ((i; x) ; (j; A))

for all x 2 [0; R] and for all Borel set A � [0; R], where T ((i; �) ; (j; A)) is lower semi-
continuous (l.s.c.) for all (i; j; A) and where T ((i; x) ; E � [0; R]) > 0 for all (i; x).
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Indeed, let t0 > 0 be �xed. For any Borel set A � [0; R] with interior �A, and any
(i; j; x) 2 E2 � [0; R], we set

T ((i; x) ; (j; A)) = 1fi=jgP(i;x) (T1 > t0)1�A (g(i; x; t0))

= 1fi=jgc(i;x) (t0)1�A (g(i; x; t0))

where

c(i;x) (t0) = e�
R t0
0 �i(g(i;x;s))ds:

We then have:

Pt0 ((i; x) ; (j; A)) = E(i;x) (It0 = j;Xt0 2 A)

� 1fi=jgc(i;x) (t0)1A (g(i; x; t0))

� T ((i; x) ; (j; A))

where T ((i; �) ; (j; A)) is l.s.c. because �A is an open set, so that (It; Xt)t�0 is a T-
process. Using Theorem 3.3 from Meyn and Tweedie (1993b), the process (It; Xt)t�0
now is Harris recurrent and admits a unique invariant measure � up to some multi-
plicative constant. Besides, � and ' = cf0;1g � l are mutually absolutely continuous
(see Down and al. (1995)) and there is some positive measurable function fi such that:

� (i;dx) = fi (x) dx

Using the fact that � (�;dx) is such that �H(p)
0 ' = 0 for all ' continuously di¤erentiable

on E � [0; R] with

H0' (1; x) = �r1(x)'0 (1; x)� �1(x)' (1; x) + �1(x)' (0; x)

H0' (0; x) = r0(x)'
0 (0; x)� �0(x)' (0; x) + �0(x)' (1; x)

one easily �nds that

�1�i (x) f1�i (x)� �i (x) fi (x)�
d

dx
(vi (x) fi (x)) = 0

for i = 0; 1. Solving this system of o.d.e. provides (f0; f1) of the form (39� 40). Check-
ing that, under our assumptions,

RR
0 fi (x) dx < 1 for i = 0; 1, we derive that �

is a �nite measure which can then be normalized in a single way into a probability
measure. Consequently, (It; Xt)t�0 is a positive Harris recurrent process, which ends
the proof. ut

We now prove that the process (It; Xt)t�0 is uniformly ergodic (H3).

Proposition 6 Under assumptions (36� 38), assumption H3 is true, namely there is
some function f ful�lling (18) such that:

j(Pth) (i; x)� �hj � f (t)

for all (i; x) 2 E � [0; R] and all t � 0.
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Proof According to Theorem 8.1 by Meyn and Tweedie (1993a), if (It; Xt)t�0 is
bounded in probability on average (condition 1), if there is some t0 � 0 such that
the kernel

P
n2N Pt0n ((i; x) ; �) possesses an everywhere non trivial countinuous com-

ponent (condition 2) and if the state space is compact (condition 3), then there is some
� 2 [0; 1[ such that:

lim
t!+1

sup
(i;x)2E�[0;R]

��t kPt ((i; x) ; �)� �kTV = 0 (41)

where k:kTV stands for the norm in total variation. Now, according to Theorem 3.2
from Meyn and Tweedie (1993a), as (It; Xt)t�0 is a '-irreducible T - process which
is positive Harris recurrent (see Proposition 5 and its proof), the process (It; Xt)t�0
is bounded in probability on average and condition 1 is true. The second condition is
clear too because setting T2 to be the second jump time, we have for any t0 > 0 :

Pt0 ((i; x) ; (j; A))

� P(i;x) (T1 � t0 < T2; It0 = j;Xt0 2 A)

= 1fj=1�ig

Z t0

0
c(i;x) (s)� (i; g (i; x; s)) c(j;g(i;x;s)) (t0 � s)1A (g (j; g (i; x; s) ; t0 � s)) ds

for any (i; j; x) 2 E2 � [0; R] and for any Borel set A (see Cocozza-Thivent and al.
(2006b)). The kernel Pt0 ((i; x) ; �) then possesses an everywhere non trivial countinuous
component, and

P
n2N Pt0n ((i; x) ; �) does too. As the state space is compact, the three

conditions are veri�ed and we derive that (41) is true. Consequently, there is some t1
such that, for all t > t1, we have:

sup
(i;x)2E�[0;R]

��t kPt ((i; x) ; �)� �kTV � 1

and hence:
j(Pth) (i; x)� �hj � khk1 �t

for all (i; x) 2 E � [0; R] and all t > t1. Setting

f (t) =

8<: sup(i;x)2E�[0;R]u�t1
j(Pth) (i; x)� �hj if t � t1

khk1 �t if t > t1

easily provides the result. ut

8.2 Quantities of interest

We are interested in two quantities: �rst, the proportion of time spent by the level in
the tank between two �xed bounds R2 � a and R

2 + b with 0 < a; b < R
2 and we set:

Q1 (t) =
1

t
E�0

�Z t

0
1fR2 �a�Xs�R

2 +bgds
�

=
1

t

1X
i=0

Z t

0

Z R
2 +b

R
2 �a

�s (i;dx) ds

=
1

t

Z t

0
�sh1 ds (42)
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with h1 (i; x) = 1[R2 �a;R2 +b]
(x).

The second quantity of interest is the mean number of times the pump is turned
o¤, namely turned from state "in" (0) to state "out" (1) by unit time, namely:

Q2 (t) =
1

t
E�0

0@ X
0<s�t

1fIs�=0 and Is=1g

1A
=
1

t
E�0

�Z t

0
�0 (Xs)1fIs=0gds

�
=
1

t

Z t

0

Z R

0
�0 (x) �s (0;dx) ds

=
1

t

Z t

0
�sh2 ds (43)

with h2 (i; x) = 1fi=0g�0 (x).

8.3 Numerical example

We assume that the system is initially in the state (I0; X0) = (0; R=2). Besides, we
take:

�0 (x) = x�0 ; r0 (x) = (R� x)�0 ;

�1 (x) = (R� x)�1 ; r1 (x) = x�1

for x 2 [0; R] with �i > 1 and �i > 1. All conditions for irreducibility are here
achieved. Our aim is to compute the importance factors with respect to p for p 2
f�0; �1; r0; r1; a; bg both in Q1 (t) and Q2 (t), except for parameters a and b which
intervenes only in Q1 (t).

We take the following numerical values:

�0 = 1:05; �0 = 1:2;�1 = 1:10;

�1 = 1:1;R = 1; a = 0:2; b = 0:2.

Similarly as for the �rst method, we test our results using �nite di¤erences (FD).
For FD, the transitory results are computed via the �nite volume scheme from Eymard
and al. (2008) and the asymptotic results via (39� 40). The results are here rather
stable choosing di¤erent values for " and they are provided for " = 10�2 in case
p 2 f�0; �1; r0; r1g and for " = 10�3 in case p 2 fa; bg. EMR results are computed
using the �nite volume methods from Section 6. The asymptotic results are given in
Tables 2 and 3, and the transitory ones are given in Table 4 and 5 for t = 2.

Table 2: IF (1)p (1) by FD and EMR

p FD EMR Relative error
�0 �3:59� 10�2 �3:57� 10�2 5; 40� 10�3

�1 �4:45� 10�2 �4:43� 10�2 3; 65� 10�3

�0 3:19� 10�1 3:17� 10�1 6; 95� 10�3

�1 2:80� 10�1 2:78� 10�1 7; 19� 10�3

a 4:98� 10�1 4:98� 10�1 1; 06� 10�7

b 5:09� 10�1 5:09� 10�1 1; 53� 10�7
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Table 3: IF (2)p (1) by FD and EMR

p FD EMR Relative error
�0 �1:81� 10�1 �1:81� 10�1 1; 67� 10�4

�1 �1:71� 10�1 �1:71� 10�1 1; 30� 10�4

�0 �6:22� 10�2 �6:19� 10�2 5; 21� 10�3

�1 �6:05� 10�2 �6:01� 10�2 5; 58� 10�3

Table 4: IF (1)p (t) for t = 2 by FD and EMR

p FD EMR Relative error
�0 �8:83� 10�2 �8:82� 10�2 1; 08� 10�3

�1 �9:10� 10�3 �9:05� 10�3 5; 29� 10�3

�0 4:89� 10�1 4:85� 10�1 7; 51� 10�3

�1 1:97� 10�1 1:97� 10�1 4; 04� 10�3

a 2:48� 10�1 2:48� 10�1 4; 89� 10�4

b 7:11� 10�1 7:11� 10�1 7; 77� 10�6

Table 5: IF (2)p (t) for t = 2 by FD and EMR

p FD EMR Relative error
�0 �2:06� 10�1 �2:06� 10�1 9; 12� 10�4

�1 �6:80� 10�2 �6:79� 10�2 2; 12� 10�3

�0 �1:25� 10�1 �1:24� 10�1 4; 27� 10�3

�1 �4:11� 10�3 �4:03� 10�3 2; 00� 10�2

The results are very similar by FD and EMR both for the asymptotic and transitory
quantities, which here again validate the method. Besides, we may observe that the
asymptotic results coincides by both methods, even in the case when the velocity
�eld v (i; x) depends on the parameter (here �i), which however does not �t with our
technical assumptions from Section 5. Due to that (and to other examples where the
same remark is valid), one may conjecture that the results from Section 5 are valid
under less restrictive assumptions than those given in that section.

As for the respective importance of the di¤erent parameters in Qi (t), one may note
that the importance factors at t = 2 of �0 and �0 in Qi (t) (i = 1; 2) are clearly higher
than the importance factors of �1 and �1 in Qi (t) (i = 1; 2). This must be due to the
fact that the system starts from state 0, so that on [0; 2], the system spends more time
in state 0 than in state 1. The parameters linked to state 0 hence are more important
than the ones linked to state 1. Similarly, the level is increasing in state 0 so that the
upper bound b is more important than the lower one a.

In long-time run, the importance factors of �0 and �1 in Qi (t) (i = 1; 2) are
comparable, which is conform with intuition. The same remark is valid for �0 and �1,
as well as for a and b.

Finally, parameters �0 and �1 are more important than parameters �0 and �1 in
Q1 (t), conversely to what happens in Q2 (t). This seems coherent with the fact that
quantity Q1 (t) is linked to the level in the tank, and consequently to its evolution,
controlled by �0 and �1, whereas quantity Q2 (t) is linked to the transition rates, and
consequently to �0 and �1.
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9 Appendix

This appendix gives a result of existence, uniqueness and regularity for the solution of
the equation :

'(t; i; z) = '0(i; z) +

Z t

t0

F(s; '(s; :; :))(i; z) ds

We shall use the notations :

� I =]a; b[ bounded interval of R, E �nite set and W open subset of RK ,
� Cb1(E;W ) set of bounded function from E �W to R, continuously di¤erentiable
with respect to the variables in W with bounded partial derivatives ,

� if 	 2 Cb1(E;W ),r	 is the vector of partial derivatives with respect to the variables
in W ,

� if 	 2 Cb1(E;W ), k	kCb
1(E;W ) = max (k	k1; kr	k1),

� Cb1(I; E;W ) set of bounded functions '(s; i; z) from I � E �W to R, continuous
in the variables in I �W , such that for all s in I, the function (i; z) ! '(s; i; z)

belongs to Cb1(E;W ) and such that sups2I k'(s; :; :)kCb
1(E;W ) < +1,

� if ' belongs to Cb1(I; E;W ), k'kCb
1(I;E;W ) = sups2I k'(s; :; :)kCb

1(E;W ),

� Cb2(E;W ) set of bounded function from E �W to R, two times continuously dif-
ferentiable with respect to the variables in W with bounded partial derivatives,

� if 	 2 Cb2(E;W ), J(	) is the matrix of second order derivatives with respect to the
variables in W ,

� if 	 2 Cb2(E;W ), k	kCb
2(E;W ) = max (k	k1; kr	k1; kJ (	) k1),

� Cb2(I; E;W ) set of bounded functions '(s; i; z) from I � E �W to R, continuous
in the variables in I �W , such that for all s in I, the function (i; z) ! '(s; i; z)

belongs to Cb2(E;W ) and such that sups2I k'(s; :; :)kCb
2(E;W ) < +1,

� if ' belongs to Cb2(I; E;W ), k'kCb
2(I;E;W ) = sups2I k'(s; :; :)kCb

2(E;W ).

Theorem 4 Let us consider the equation

'(t; i; z) = '0(i; z) +

Z t

t0

F(s; '(s; :; :))(i; z) ds

and let us suppose that :

� t0 2 I, t 2 I, i 2 E, z 2W ,
� '0 belongs to C

b
1(E;W ),

� if ' belongs to Cb1(I; E;W ), then the application (s; i; z) ! F(s; '(s; :; :))(i; z) be-
longs to Cb1(I; E;W ),

� if 	1 and 	2 are in C
b
1(E;W ) there exists a positive constant C such that for all s

in I :
kF(s; 	1)�F(s; 	2)k1 � Ck	1 � 	2kCb

1(E;W )

krF(s; 	1)�rF(s; 	2)k1 � Ck	1 � 	2kCb
1(E;W )

Then there exists a unique solution which belongs to Cb1(I; E;W ) and is continuously
di¤erentiable with respect to the �rst variable. If, in addition, we have

� '0 belongs to C
b
2(E;W ),
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� if ' belongs to Cb2(I; E;W ), then the application (s; i; z) ! F(s; '(s; :; :))(i; z) be-
longs to Cb2(I; E;W ),

� if 	1 and 	2 are in C
b
2(E;W ) there exists a positive constant C such that for all s

in I:

kJ(F(s; 	1))� J(F(s; 	2))k1 � Ck	1 � 	2kCb
2(E;W )

then there exists a unique solution which belongs to Cb2(I; E;W ) and is continuously
di¤erentiable with respect to the �rst variable.

Proof Let us prove the �rst part of the theorem. To prove the existence of a solution,
starting from an initial function '(0) of Cb1(I; E;W ), we de�ne a sequence '(n) of
functions of Cb1(I; E;W ) by:

'(n+1)(t; i; z) = '0(i; z) +

Z t

t0

F(s; '(n)(s; :; :))(i; z) ds (44)

Thanks to theorem of di¤erentiation under integral, we can prove that these functions
are in Cb1(I; E;W ) and that the vector of partial derivatives with respect to variables
in W satis�es:

r'(n+1)(t; i; z) = r'0(i; z) +
Z t

t0

rF(s; '(n)(s; :; :))(i; z) ds

We have

k'(n+1)(t; :; :)� '(n)(t; :; :)k1 � C

Z t

t0

k'(n)(s; :; :)� '(n�1)(s; :; :)kCb
1(E;W ) ds

and

kr'(n+1)(t; :; :)�r'(n)(t; :; :)k1 � C

Z t

t0

k'(n)(s; :; :)� '(n�1)(s; :; :)kCb
1(E;W ) ds

so that

k'(n+1)(t; :; :)� '(n)(t; :; :)kCb
1(E;W ) � C

Z t

t0

k'(n)(s; :; :)� '(n�1)(s; :; :)kCb
1(E;W ) ds

Iterating this inequality, we obtain for all t in I:

k'(n)(t; :; :)� '(n�1)(t; :; :)kCb
1(E;W ) � K

Cn(t� t0)
n

n!

Hence

k'(n) � '(n�1)kCb
1(I;E;W ) � K

Cn(b� a)n

n!

Then the sequence '(n) is a Cauchy sequence in the Banach space Cb1(I; E;W ) and
it converges to a function ' in Cb1(I; E;W ) as n tends to in�nity. Taking the limit in
equation (44), we obtain:

'(t; i; z) = '0(i; z) +

Z t

t0

F(s; '(s; :; :)(i; z) ds
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In order to prove the uniqueness of the solution, let '1; '2 2 Cb1(I; E;W ) be two
di¤erent solutions of the equation. We have:

'1(t; i; z)� '2(t; i; z) =

Z t

t0

(F(s; '1(s; :; :))�F(s; '2(s; :; :))) ds

and

r'1(t; i; z)�r'2(t; i; z) =
Z t

t0

(rF(s; '1(s; :; :))�rF(s; '2(s; :; :))) ds

Then

k'1(t; :; :)� '2(t; :; :)kCb
1(E;W ) � C

Z t

t0

k'1(s; :; :)� '2(s; :; :)kCb
1(E;W ) ds

and by iteration

k'1(t; :; :)� '2(t; :; :)kCb
1(E;W ) � K

Cn(t� t0)
n

n!

Hence for all n in N:

k'1 � '2kCb
1(I;E;W ) � K

Cn(b� a)n

n!

The uniqueness follows. We can prove the second part of theorem in the same way. ut
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